Title:
|
Nonlocal semilinear second-order differential inclusions in abstract spaces without compactness (English) |
Author:
|
Pavlačková, Martina |
Author:
|
Taddei, Valentina |
Language:
|
English |
Journal:
|
Archivum Mathematicum |
ISSN:
|
0044-8753 (print) |
ISSN:
|
1212-5059 (online) |
Volume:
|
59 |
Issue:
|
1 |
Year:
|
2023 |
Pages:
|
99-107 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
We study the existence of a mild solution to the nonlocal initial value problem for semilinear second-order differential inclusions in abstract spaces. The result is obtained by combining the Kakutani fixed point theorem with the approximation solvability method and the weak topology. This combination enables getting the result without any requirements for compactness of the right-hand side or of the cosine family generated by the linear operator. (English) |
Keyword:
|
second-order differential inclusion |
Keyword:
|
nonlocal conditions |
Keyword:
|
Banach spaces |
Keyword:
|
cosine family |
Keyword:
|
approximation solvability method |
Keyword:
|
mild solution |
MSC:
|
34A60 |
MSC:
|
34G25 |
idZBL:
|
Zbl 07675578 |
idMR:
|
MR4563020 |
DOI:
|
10.5817/AM2023-1-99 |
. |
Date available:
|
2023-02-22T14:32:04Z |
Last updated:
|
2023-05-04 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/151554 |
. |
Reference:
|
[1] Andres, J., Malaguti, L., Pavlačková, M.: On second-order boundary value problems in Banach spaces: a bound sets approach.Topol. Methods Nonlinear Anal. 37 (2) (2011), 303–341. MR 2849825 |
Reference:
|
[2] Andres, J., Malaguti, L., Pavlačková, M.: A Scorza-Dragoni approach to second-order boundary value problems in abstract spaces.Appl. Math. Inf. Sci. 6 (2) (2012), 29–44. MR 2914078 |
Reference:
|
[3] Balachandran, K., Park, J.Y.: Existence of solutions of second order nonlinear differential equations with nonlocal conditions in Banach spaces.Indian J. Pure Appl. Math. 32 (12) (2001), 1883–1891. MR 1879632 |
Reference:
|
[4] Benchohra, M., Nieto, J.J., Rezoug, N.: Second order evolution equations with nonlocal conditions.Demonstr. Math. 50 (2017), 309–319. MR 3742568, 10.1515/dema-2017-0029 |
Reference:
|
[5] Benchohra, M., Rezoug, N., Samet, B., Zhou, Y.: Second order semilinear Volterra-type integro-differential equations with non-instantaneous impulses.Mathematics 7 (12) (2019), 20 pp., art. no. 1134. 10.3390/math7121134 |
Reference:
|
[6] Benedetti, I., Loi, N.V., Malaguti, L., Obukhovskii, V.: An approximation solvability method for nonlocal differential problems in Hilbert spaces.Commun. Contemp. Math. 19 (2) (2017), 34 pp. MR 3611657 |
Reference:
|
[7] Benedetti, I., Loi, N.V., Malaguti, L., Taddei, V.: Nonlocal diffusion second order partial differential equations.J. Differential Equations 262 (2007), 1499–1523. MR 3582201, 10.1016/j.jde.2016.10.019 |
Reference:
|
[8] Benedetti, I., Loi, N.V., Taddei, V.: An approximation solvability method for nonlocal semilinear differential problems in Banach spaces.Discrete Contin. Dyn. Syst. Ser. A 37 (6) (2017), 2977–2998. MR 3622071, 10.3934/dcds.2017128 |
Reference:
|
[9] Benedetti, I., Malaguti, L., Taddei, V.: Nonlocal semilinear evolution equations without strong compactness: theory and applications.Rend. Istit. Mat. Univ. Trieste 44 (2012), 371–388. MR 3047115 |
Reference:
|
[10] Bochner, S., Taylor, A.E.: Linear functionals on certain spaces of abstractly valued functions.Ann. Math. 39 (1938), 913–944. 10.2307/1968472 |
Reference:
|
[11] Byszewski, L., Lakshmikantham, V.: Theorem about the existence and uniqueness of a solution of a nonlocal abstract cauchy problem in a Banach space.Appl. Anal. 40 (1) (1991), 11–19. 10.1080/00036819008839989 |
Reference:
|
[12] Cardinali, T., Gentili, S.: An existence theorem for a non-autonomous second order nonlocal multivalued problem.Stud. Univ. Babeş-Bolyai Math. 62 (1) (2017), 101–117. MR 3627069, 10.24193/subbmath.2017.0008 |
Reference:
|
[13] Cernea, A.: A note on the solutions of a second-order evolution in non separable Banach spaces.Comment. Math. Univ. Carolin. 58 (3) (2017), 307–314. MR 3708775 |
Reference:
|
[14] Henríquez, H.R., Poblete, V., Pozo, J.: Mild solutions of non-autonomous second order problems with nonlocal initial conditions.J. Math. Anal. Appl. 412 (2014), 1064–1083. MR 3147269, 10.1016/j.jmaa.2013.10.086 |
Reference:
|
[15] Hernández, E.M., Henríquez, H.R.: Global solutions for a functional second order abstract Cauchy problem with nonlocal conditions.Ann. Polon. Math. 83 (2) (2004), 149–170. MR 2111405, 10.4064/ap83-2-6 |
Reference:
|
[16] Hernández, E.M., Henríquez, H.R.: Existence results for second order differential equations with nonlocal conditions in Banach spaces.Funkcial. Ekvac. 52 (1) (2009), 113–137. MR 2538282, 10.1619/fesi.52.113 |
Reference:
|
[17] Kakutani, S.A.: Generalization of Brouwer’s fixed point theorem.Duke Math. J. 8 (1941), 451–459. 10.1215/S0012-7094-41-00838-4 |
Reference:
|
[18] Kamenskii, M., Obukhovskii, V., Zecca, P.: Condensing multivalued maps and semilinear differential inclusions in Banach spaces.W. de Gruyter, Berlin, 2001. MR 1831201 |
Reference:
|
[19] Malaguti, L., Perrotta, S., Taddei, V.: $ L^p $ exact controllability of partial differential equations with nonlocal terms.Evol. Equ. Control Theory 11 (5) (2022), 1533–1564. MR 4475865, 10.3934/eect.2021053 |
Reference:
|
[20] Pavlačková, M., Taddei, V.: Mild solutions of second-order semilinear impulsive differential inclusions in Banach spaces.Mathematics 10 (672) (2022). 10.3390/math10040672 |
Reference:
|
[21] Tidke, H.L., Dhakne, M.B.: Global existence of mild solutions of second order nonlinear Volterra integrodifferential equations in Banach spaces.Differ. Equ. Dyn. Syst. 17 (4) (2009), 331–342. MR 2610901, 10.1007/s12591-009-0024-8 |
Reference:
|
[22] Travis, C.C., Webb, G.F.: Cosine families and abstract nonlinear second order differential equations.Acta Math. Acad. Sci. Hungar. 32 (1–2) (1978), 75–96. 10.1007/BF01902205 |
Reference:
|
[23] Wu, J.: Theory and application of partial functional differential equations.Springer-Verlag, New York, 1996. |
Reference:
|
[24] Xiao, J.-Z., Zhu, X.-H., Cheng, R.: The solution sets for second order semilinear impulsive multivalued boundary value problems.Comput. Math. Appl. 64 (2) (2012), 147–160. MR 2928211, 10.1016/j.camwa.2012.02.015 |
. |