Previous |  Up |  Next

Article

Title: Nonlocal semilinear second-order differential inclusions in abstract spaces without compactness (English)
Author: Pavlačková, Martina
Author: Taddei, Valentina
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 59
Issue: 1
Year: 2023
Pages: 99-107
Summary lang: English
.
Category: math
.
Summary: We study the existence of a mild solution to the nonlocal initial value problem for semilinear second-order differential inclusions in abstract spaces. The result is obtained by combining the Kakutani fixed point theorem with the approximation solvability method and the weak topology. This combination enables getting the result without any requirements for compactness of the right-hand side or of the cosine family generated by the linear operator. (English)
Keyword: second-order differential inclusion
Keyword: nonlocal conditions
Keyword: Banach spaces
Keyword: cosine family
Keyword: approximation solvability method
Keyword: mild solution
MSC: 34A60
MSC: 34G25
idZBL: Zbl 07675578
idMR: MR4563020
DOI: 10.5817/AM2023-1-99
.
Date available: 2023-02-22T14:32:04Z
Last updated: 2023-05-04
Stable URL: http://hdl.handle.net/10338.dmlcz/151554
.
Reference: [1] Andres, J., Malaguti, L., Pavlačková, M.: On second-order boundary value problems in Banach spaces: a bound sets approach.Topol. Methods Nonlinear Anal. 37 (2) (2011), 303–341. MR 2849825
Reference: [2] Andres, J., Malaguti, L., Pavlačková, M.: A Scorza-Dragoni approach to second-order boundary value problems in abstract spaces.Appl. Math. Inf. Sci. 6 (2) (2012), 29–44. MR 2914078
Reference: [3] Balachandran, K., Park, J.Y.: Existence of solutions of second order nonlinear differential equations with nonlocal conditions in Banach spaces.Indian J. Pure Appl. Math. 32 (12) (2001), 1883–1891. MR 1879632
Reference: [4] Benchohra, M., Nieto, J.J., Rezoug, N.: Second order evolution equations with nonlocal conditions.Demonstr. Math. 50 (2017), 309–319. MR 3742568, 10.1515/dema-2017-0029
Reference: [5] Benchohra, M., Rezoug, N., Samet, B., Zhou, Y.: Second order semilinear Volterra-type integro-differential equations with non-instantaneous impulses.Mathematics 7 (12) (2019), 20 pp., art. no. 1134. 10.3390/math7121134
Reference: [6] Benedetti, I., Loi, N.V., Malaguti, L., Obukhovskii, V.: An approximation solvability method for nonlocal differential problems in Hilbert spaces.Commun. Contemp. Math. 19 (2) (2017), 34 pp. MR 3611657
Reference: [7] Benedetti, I., Loi, N.V., Malaguti, L., Taddei, V.: Nonlocal diffusion second order partial differential equations.J. Differential Equations 262 (2007), 1499–1523. MR 3582201, 10.1016/j.jde.2016.10.019
Reference: [8] Benedetti, I., Loi, N.V., Taddei, V.: An approximation solvability method for nonlocal semilinear differential problems in Banach spaces.Discrete Contin. Dyn. Syst. Ser. A 37 (6) (2017), 2977–2998. MR 3622071, 10.3934/dcds.2017128
Reference: [9] Benedetti, I., Malaguti, L., Taddei, V.: Nonlocal semilinear evolution equations without strong compactness: theory and applications.Rend. Istit. Mat. Univ. Trieste 44 (2012), 371–388. MR 3047115
Reference: [10] Bochner, S., Taylor, A.E.: Linear functionals on certain spaces of abstractly valued functions.Ann. Math. 39 (1938), 913–944. 10.2307/1968472
Reference: [11] Byszewski, L., Lakshmikantham, V.: Theorem about the existence and uniqueness of a solution of a nonlocal abstract cauchy problem in a Banach space.Appl. Anal. 40 (1) (1991), 11–19. 10.1080/00036819008839989
Reference: [12] Cardinali, T., Gentili, S.: An existence theorem for a non-autonomous second order nonlocal multivalued problem.Stud. Univ. Babeş-Bolyai Math. 62 (1) (2017), 101–117. MR 3627069, 10.24193/subbmath.2017.0008
Reference: [13] Cernea, A.: A note on the solutions of a second-order evolution in non separable Banach spaces.Comment. Math. Univ. Carolin. 58 (3) (2017), 307–314. MR 3708775
Reference: [14] Henríquez, H.R., Poblete, V., Pozo, J.: Mild solutions of non-autonomous second order problems with nonlocal initial conditions.J. Math. Anal. Appl. 412 (2014), 1064–1083. MR 3147269, 10.1016/j.jmaa.2013.10.086
Reference: [15] Hernández, E.M., Henríquez, H.R.: Global solutions for a functional second order abstract Cauchy problem with nonlocal conditions.Ann. Polon. Math. 83 (2) (2004), 149–170. MR 2111405, 10.4064/ap83-2-6
Reference: [16] Hernández, E.M., Henríquez, H.R.: Existence results for second order differential equations with nonlocal conditions in Banach spaces.Funkcial. Ekvac. 52 (1) (2009), 113–137. MR 2538282, 10.1619/fesi.52.113
Reference: [17] Kakutani, S.A.: Generalization of Brouwer’s fixed point theorem.Duke Math. J. 8 (1941), 451–459. 10.1215/S0012-7094-41-00838-4
Reference: [18] Kamenskii, M., Obukhovskii, V., Zecca, P.: Condensing multivalued maps and semilinear differential inclusions in Banach spaces.W. de Gruyter, Berlin, 2001. MR 1831201
Reference: [19] Malaguti, L., Perrotta, S., Taddei, V.: $ L^p $ exact controllability of partial differential equations with nonlocal terms.Evol. Equ. Control Theory 11 (5) (2022), 1533–1564. MR 4475865, 10.3934/eect.2021053
Reference: [20] Pavlačková, M., Taddei, V.: Mild solutions of second-order semilinear impulsive differential inclusions in Banach spaces.Mathematics 10 (672) (2022). 10.3390/math10040672
Reference: [21] Tidke, H.L., Dhakne, M.B.: Global existence of mild solutions of second order nonlinear Volterra integrodifferential equations in Banach spaces.Differ. Equ. Dyn. Syst. 17 (4) (2009), 331–342. MR 2610901, 10.1007/s12591-009-0024-8
Reference: [22] Travis, C.C., Webb, G.F.: Cosine families and abstract nonlinear second order differential equations.Acta Math. Acad. Sci. Hungar. 32 (1–2) (1978), 75–96. 10.1007/BF01902205
Reference: [23] Wu, J.: Theory and application of partial functional differential equations.Springer-Verlag, New York, 1996.
Reference: [24] Xiao, J.-Z., Zhu, X.-H., Cheng, R.: The solution sets for second order semilinear impulsive multivalued boundary value problems.Comput. Math. Appl. 64 (2) (2012), 147–160. MR 2928211, 10.1016/j.camwa.2012.02.015
.

Files

Files Size Format View
ArchMathRetro_059-2023-1_11.pdf 429.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo