Previous |  Up |  Next

Article

Title: Critical points for reaction-diffusion system with one and two unilateral conditions (English)
Author: Eisner, Jan
Author: Žilavý, Jan
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 59
Issue: 2
Year: 2023
Pages: 173-180
Summary lang: English
.
Category: math
.
Summary: We show the location of so called critical points, i.e., couples of diffusion coefficients for which a non-trivial solution of a linear reaction-diffusion system of activator-inhibitor type on an interval with Neumann boundary conditions and with additional non-linear unilateral condition at one or two points on the boundary and/or in the interior exists. Simultaneously, we show the profile of such solutions. (English)
Keyword: reaction-diffusion system
Keyword: critical points
Keyword: unilateral conditions
MSC: 34B15
MSC: 35B36
MSC: 92C15
idZBL: Zbl 07675587
idMR: MR4563029
DOI: 10.5817/AM2023-2-173
.
Date available: 2023-02-22T14:42:11Z
Last updated: 2023-05-04
Stable URL: http://hdl.handle.net/10338.dmlcz/151564
.
Reference: [1] Eisner, J., Kučera, M., Väth, M.: Global bifurcation of a reaction-diffusion system with inclusions.J. Anal. Appl. 28 (4) (2009), 373–409. MR 2550696
Reference: [2] Eisner, J., Väth, M.: Degree, instability and bifurcation of reaction-diffusion systems with obstacles near certain hyperbolas.Nonlinear Anal. 135 (2016), 158–193. MR 3473115
Reference: [3] Kouba, P.: Existence of nontrivial solutions for reaction-diffusion systems of activator-inhibitor type with dependence on parameter.Master's thesis, Č. Budějovice, Faculty of Science, University of South Bohemia, 2015, (in Czech).
Reference: [4] Kučera, M., Väth, M.: Bifurcation for reaction-diffusion systems with unilateral and Neumann boundary conditions.J. Differential Equations 252 (2012), 2951–2982. MR 2871789, 10.1016/j.jde.2011.10.016
Reference: [5] Mimura, M., Nishiura, Y., Yamaguti, M.: Some diffusive prey and predator systems and their bifurcation problems.Ann. N.Y. Acad. Sci. 316 (1979), 490–510. Zbl 0437.92027, 10.1111/j.1749-6632.1979.tb29492.x
Reference: [6] Pšenicová, M.: Newton boundary value problem for reaction-diffusion system of activator-inhibitor type with parameter.Bachelor thesis, Č. Budějovice (2018), Faculty of Science, University of South Bohemia, 2018, (in Czech).
Reference: [7] Turing, A.M.: The chemical basis of morphogenesis.Philos. Trans. Roy. Soc. London Ser. B 237 (641) (1952), 37–72. 10.1098/rstb.1952.0012
.

Files

Files Size Format View
ArchMathRetro_059-2023-2_4.pdf 767.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo