Title:
|
Stabilization in degenerate parabolic equations in divergence form and application to chemotaxis systems (English) |
Author:
|
Ishida, Sachiko |
Author:
|
Yokota, Tomomi |
Language:
|
English |
Journal:
|
Archivum Mathematicum |
ISSN:
|
0044-8753 (print) |
ISSN:
|
1212-5059 (online) |
Volume:
|
59 |
Issue:
|
2 |
Year:
|
2023 |
Pages:
|
181-189 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
This paper presents a stabilization result for weak solutions of degenerate parabolic equations in divergence form. More precisely, the result asserts that the global-in-time weak solution converges to the average of the initial data in some topology as time goes to infinity. It is also shown that the result can be applied to a degenerate parabolic-elliptic Keller-Segel system. (English) |
Keyword:
|
stabilization |
Keyword:
|
degenerate diffusion |
Keyword:
|
Keller-Segel systems |
MSC:
|
35B35 |
MSC:
|
35D30 |
MSC:
|
35Q92 |
MSC:
|
92C17 |
idZBL:
|
Zbl 07675588 |
idMR:
|
MR4563030 |
DOI:
|
10.5817/AM2023-2-181 |
. |
Date available:
|
2023-02-22T14:43:38Z |
Last updated:
|
2023-05-04 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/151565 |
. |
Reference:
|
[1] Cao, X.: Global bounded solutions of the higher-dimensional Keller-Segel system under smallness conditions in optimal spaces.Discrete Contin. Dyn. Syst. 35 (2015), 1891–1904. MR 3294230, 10.3934/dcds.2015.35.1891 |
Reference:
|
[2] Cieślak, T., Stinner, C.: Finite-time blowup in a supercritical quasilinear parabolic-parabolic Keller-Segel system in dimension 2.Acta Appl. Math. 129 (2014), 135–146. Zbl 1295.35123, MR 3152080, 10.1007/s10440-013-9832-5 |
Reference:
|
[3] Cieślaka, T., Winkler, M.: Stabilization in a higher-dimensional quasilinear Keller-Segel system with exponentially decaying diffusivity and subcritical sensitivity.Nonlinear Anal. 159 (2017), 129–144. MR 3659827 |
Reference:
|
[4] Hashira, T., Ishida, S., Yokota, T.: Finite-time blow-up for quasilinear degenerate Keller-Segel systems of parabolic-parabolic type.J. Differential Equations 264 (2018), 6459–6485. MR 3770055, 10.1016/j.jde.2018.01.038 |
Reference:
|
[5] Ishida, S., Seki, K., Yokota, T.: Boundedness in quasilinear Keller-Segel systems of parabolic-parabolic type on non-convex bounded domains.J. Differential Equations 256 (2014), 2993–3010. MR 3199754, 10.1016/j.jde.2014.01.028 |
Reference:
|
[6] Ishida, S., Yokota, T.: Boundedness in a quasilinear fully parabolic Keller-Segel system via maximal Sobolev regularity.Discrete Contin. Dyn. Syst. Ser. S 13 (2020), 212–232. MR 4043690 |
Reference:
|
[7] Ishida, S., Yokota, T.: Weak stabilization in degenerate parabolic equations in divergence form: application to degenerate Keller-Segel systems.Calc. Var. Partial Differential Equations 61 (2022), Paper No. 105. MR 4404850, 10.1007/s00526-022-02203-w |
Reference:
|
[8] Jiang, J.: Convergence to equilibria of global solutions to a degenerate quasilinear Keller-Segel system.Z. Angew. Math. Phys. 69 (2018), Paper No. 130. MR 3856789, 10.1007/s00033-018-1025-7 |
Reference:
|
[9] Langlais, M., Phillips, D.: Stabilization of solutions of nonlinear and degenerate evolution equations.Nonlinear Anal. 9 (1985), 321–333. 10.1016/0362-546X(85)90057-4 |
Reference:
|
[10] Lankeit, J.: Infinite time blow-up of many solutions to a general quasilinear parabolic-elliptic Keller-Segel system.Discrete Contin. Dyn. Syst. Ser. S 13 (2020), 233–255. MR 4043691 |
Reference:
|
[11] Laurençot, P., Mizoguchi, N.: Finite time blowup for the parabolic-parabolic Keller-Segel system with critical diffusion.Ann. Inst. H. Poincaré Anal. Non Linéaire 34 (2017), 197–220. MR 3592684, 10.1016/j.anihpc.2015.11.002 |
Reference:
|
[12] Senba, T., Suzuki, T.: A quasi-linear parabolic system of chemotaxis.Abstr. Appl. Anal. 2006 (2006), 1–21. MR 2211660, 10.1155/AAA/2006/23061 |
Reference:
|
[13] Sugiyama, Y., Kunii, H.: Global existence and decay properties for a degenerate Keller-Segel model with a power factor in drift term.J. Differential Equations 227 (2006), 333–364. MR 2235324, 10.1016/j.jde.2006.03.003 |
Reference:
|
[14] Tao, Y., Winkler, M.: Boundedness in a quasilinear parabolic-parabolic Keller-Segel system with subcritical sensitivity.J. Differential Equations 252 (2012), 692–715. MR 2852223, 10.1016/j.jde.2011.08.019 |
Reference:
|
[15] Winkler, M.: Aggregation vs. global diffusive behavior in the higher-dimensional Keller-Segel model.J. Differential Equations 248 (2010), 2889–2905. Zbl 1190.92004, MR 2644137, 10.1016/j.jde.2010.02.008 |
Reference:
|
[16] Winkler, M.: Finite-time blow-up in the higher-dimensional parabolic-parabolic Keller-Segel system.J. Math. Pures Appl. 100 (2013), 748–767. Zbl 1326.35053, MR 3115832, 10.1016/j.matpur.2013.01.020 |
. |