Previous |  Up |  Next

Article

Title: Stabilization in degenerate parabolic equations in divergence form and application to chemotaxis systems (English)
Author: Ishida, Sachiko
Author: Yokota, Tomomi
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 59
Issue: 2
Year: 2023
Pages: 181-189
Summary lang: English
.
Category: math
.
Summary: This paper presents a stabilization result for weak solutions of degenerate parabolic equations in divergence form. More precisely, the result asserts that the global-in-time weak solution converges to the average of the initial data in some topology as time goes to infinity. It is also shown that the result can be applied to a degenerate parabolic-elliptic Keller-Segel system. (English)
Keyword: stabilization
Keyword: degenerate diffusion
Keyword: Keller-Segel systems
MSC: 35B35
MSC: 35D30
MSC: 35Q92
MSC: 92C17
idZBL: Zbl 07675588
idMR: MR4563030
DOI: 10.5817/AM2023-2-181
.
Date available: 2023-02-22T14:43:38Z
Last updated: 2023-05-04
Stable URL: http://hdl.handle.net/10338.dmlcz/151565
.
Reference: [1] Cao, X.: Global bounded solutions of the higher-dimensional Keller-Segel system under smallness conditions in optimal spaces.Discrete Contin. Dyn. Syst. 35 (2015), 1891–1904. MR 3294230, 10.3934/dcds.2015.35.1891
Reference: [2] Cieślak, T., Stinner, C.: Finite-time blowup in a supercritical quasilinear parabolic-parabolic Keller-Segel system in dimension 2.Acta Appl. Math. 129 (2014), 135–146. Zbl 1295.35123, MR 3152080, 10.1007/s10440-013-9832-5
Reference: [3] Cieślaka, T., Winkler, M.: Stabilization in a higher-dimensional quasilinear Keller-Segel system with exponentially decaying diffusivity and subcritical sensitivity.Nonlinear Anal. 159 (2017), 129–144. MR 3659827
Reference: [4] Hashira, T., Ishida, S., Yokota, T.: Finite-time blow-up for quasilinear degenerate Keller-Segel systems of parabolic-parabolic type.J. Differential Equations 264 (2018), 6459–6485. MR 3770055, 10.1016/j.jde.2018.01.038
Reference: [5] Ishida, S., Seki, K., Yokota, T.: Boundedness in quasilinear Keller-Segel systems of parabolic-parabolic type on non-convex bounded domains.J. Differential Equations 256 (2014), 2993–3010. MR 3199754, 10.1016/j.jde.2014.01.028
Reference: [6] Ishida, S., Yokota, T.: Boundedness in a quasilinear fully parabolic Keller-Segel system via maximal Sobolev regularity.Discrete Contin. Dyn. Syst. Ser. S 13 (2020), 212–232. MR 4043690
Reference: [7] Ishida, S., Yokota, T.: Weak stabilization in degenerate parabolic equations in divergence form: application to degenerate Keller-Segel systems.Calc. Var. Partial Differential Equations 61 (2022), Paper No. 105. MR 4404850, 10.1007/s00526-022-02203-w
Reference: [8] Jiang, J.: Convergence to equilibria of global solutions to a degenerate quasilinear Keller-Segel system.Z. Angew. Math. Phys. 69 (2018), Paper No. 130. MR 3856789, 10.1007/s00033-018-1025-7
Reference: [9] Langlais, M., Phillips, D.: Stabilization of solutions of nonlinear and degenerate evolution equations.Nonlinear Anal. 9 (1985), 321–333. 10.1016/0362-546X(85)90057-4
Reference: [10] Lankeit, J.: Infinite time blow-up of many solutions to a general quasilinear parabolic-elliptic Keller-Segel system.Discrete Contin. Dyn. Syst. Ser. S 13 (2020), 233–255. MR 4043691
Reference: [11] Laurençot, P., Mizoguchi, N.: Finite time blowup for the parabolic-parabolic Keller-Segel system with critical diffusion.Ann. Inst. H. Poincaré Anal. Non Linéaire 34 (2017), 197–220. MR 3592684, 10.1016/j.anihpc.2015.11.002
Reference: [12] Senba, T., Suzuki, T.: A quasi-linear parabolic system of chemotaxis.Abstr. Appl. Anal. 2006 (2006), 1–21. MR 2211660, 10.1155/AAA/2006/23061
Reference: [13] Sugiyama, Y., Kunii, H.: Global existence and decay properties for a degenerate Keller-Segel model with a power factor in drift term.J. Differential Equations 227 (2006), 333–364. MR 2235324, 10.1016/j.jde.2006.03.003
Reference: [14] Tao, Y., Winkler, M.: Boundedness in a quasilinear parabolic-parabolic Keller-Segel system with subcritical sensitivity.J. Differential Equations 252 (2012), 692–715. MR 2852223, 10.1016/j.jde.2011.08.019
Reference: [15] Winkler, M.: Aggregation vs. global diffusive behavior in the higher-dimensional Keller-Segel model.J. Differential Equations 248 (2010), 2889–2905. Zbl 1190.92004, MR 2644137, 10.1016/j.jde.2010.02.008
Reference: [16] Winkler, M.: Finite-time blow-up in the higher-dimensional parabolic-parabolic Keller-Segel system.J. Math. Pures Appl. 100 (2013), 748–767. Zbl 1326.35053, MR 3115832, 10.1016/j.matpur.2013.01.020
.

Files

Files Size Format View
ArchMathRetro_059-2023-2_5.pdf 438.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo