Title: | Tight bounds for the dihedral angle sums of a pyramid (English) |
Author: | Korotov, Sergey |
Author: | Lund, Lars Fredrik |
Author: | Vatne, Jon Eivind |
Language: | English |
Journal: | Applications of Mathematics |
ISSN: | 0862-7940 (print) |
ISSN: | 1572-9109 (online) |
Volume: | 68 |
Issue: | 3 |
Year: | 2023 |
Pages: | 259-268 |
Summary lang: | English |
. | |
Category: | math |
. | |
Summary: | We prove that eight dihedral angles in a pyramid with an arbitrary quadrilateral base always sum up to a number in the interval $(3\pi ,5\pi )$. Moreover, for any number in $(3\pi ,5\pi )$ there exists a pyramid whose dihedral angle sum is equal to this number, which means that the lower and upper bounds are tight. Furthermore, the improved (and tight) upper bound $4\pi $ is derived for the class of pyramids with parallelogramic bases. This includes pyramids with rectangular bases, often used in finite element mesh generation and analysis. (English) |
Keyword: | pyramid |
Keyword: | dihedral angle sum |
Keyword: | tight angle bounds |
MSC: | 51M20 |
MSC: | 52B10 |
idZBL: | Zbl 07729496 |
idMR: | MR4586121 |
DOI: | 10.21136/AM.2022.0010-22 |
. | |
Date available: | 2023-05-04T17:35:36Z |
Last updated: | 2023-09-13 |
Stable URL: | http://hdl.handle.net/10338.dmlcz/151653 |
. | |
Reference: | [1] Brandts, J., Cihangir, A., Křížek, M.: Tight bounds on angle sums of nonobtuse simplices.Appl. Math. Comput. 267 (2015), 397-408. Zbl 1410.51026, MR 3399056, 10.1016/j.amc.2015.02.035 |
Reference: | [2] Brandts, J., Korotov, S., Křížek, M.: The discrete maximum principle for linear simplicial finite element approximations of a reaction-diffusion problem.Linear Algebra Appl. 429 (2008), 2344-2357. Zbl 1154.65086, MR 2456782, 10.1016/j.laa.2008.06.011 |
Reference: | [3] Ciarlet, P. G.: The Finite Element Method for Elliptic Problems.Studies in Mathematics and Its Applications 4. North-Holland, Amsterdam (1978). Zbl 0383.65058, MR 0520174, 10.1016/s0168-2024(08)x7014-6 |
Reference: | [4] Gaddum, J. W.: The sums of the dihedral and trihedral angles in a tetrahedron.Am. Math. Mon. 59 (1952), 370-371. Zbl 0046.37903, MR 0048034, 10.1080/00029890.1952.11988143 |
Reference: | [5] Gaddum, J. W.: Distance sums on a sphere and angle sums in a simplex.Am. Math. Mon. 63 (1956), 91-96. Zbl 0071.36304, MR 0081488, 10.1080/00029890.1956.11988764 |
Reference: | [6] Katsuura, H.: Solid angle sum of a tetrahedron.J. Geom. Graph. 24 (2020), 29-34. Zbl 1447.51020, MR 4128185 |
Reference: | [7] Khademi, A., Korotov, S., Vatne, J. E.: On interpolation error on degenerating prismatic elements.Appl. Math., Praha 63 (2018), 237-257. Zbl 06945731, MR 3833659, 10.21136/AM.2018.0357-17 |
Reference: | [8] Khademi, A., Korotov, S., Vatne, J. E.: On the generalization of the Synge-Křížek maximum angle condition for $d$-simplices.J. Comput. Appl. Math. 358 (2019), 29-33. Zbl 1426.65177, MR 3926696, 10.1016/j.cam.2019.03.003 |
Reference: | [9] Korotov, S., Vatne, J. E.: The minimum angle condition for $d$-simplices.Comput. Math. Appl. 80 (2020), 367-370. Zbl 1446.65100, MR 4099857, 10.1016/j.camwa.2019.05.020 |
Reference: | [10] Liu, L., Davies, K. B., Yuan, K., Křížek, M.: On symmetric pyramidal finite elements.Dyn. Contin. Discrete Impuls. Syst., Ser. B, Appl. Algorithms 11 (2004), 213-227. Zbl 1041.65098, MR 2049777 |
Reference: | [11] Wieners, C.: Conforming discretizations on tetrahedrons, pyramids, prisms and hexahedrons.University Stuttgart, Bericht 97/15 (1997), 1-9. |
. |
Fulltext not available (moving wall 24 months)