Previous |  Up |  Next

Article

Title: Tight bounds for the dihedral angle sums of a pyramid (English)
Author: Korotov, Sergey
Author: Lund, Lars Fredrik
Author: Vatne, Jon Eivind
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 68
Issue: 3
Year: 2023
Pages: 259-268
Summary lang: English
.
Category: math
.
Summary: We prove that eight dihedral angles in a pyramid with an arbitrary quadrilateral base always sum up to a number in the interval $(3\pi ,5\pi )$. Moreover, for any number in $(3\pi ,5\pi )$ there exists a pyramid whose dihedral angle sum is equal to this number, which means that the lower and upper bounds are tight. Furthermore, the improved (and tight) upper bound $4\pi $ is derived for the class of pyramids with parallelogramic bases. This includes pyramids with rectangular bases, often used in finite element mesh generation and analysis. (English)
Keyword: pyramid
Keyword: dihedral angle sum
Keyword: tight angle bounds
MSC: 51M20
MSC: 52B10
idZBL: Zbl 07729496
idMR: MR4586121
DOI: 10.21136/AM.2022.0010-22
.
Date available: 2023-05-04T17:35:36Z
Last updated: 2023-09-13
Stable URL: http://hdl.handle.net/10338.dmlcz/151653
.
Reference: [1] Brandts, J., Cihangir, A., Křížek, M.: Tight bounds on angle sums of nonobtuse simplices.Appl. Math. Comput. 267 (2015), 397-408. Zbl 1410.51026, MR 3399056, 10.1016/j.amc.2015.02.035
Reference: [2] Brandts, J., Korotov, S., Křížek, M.: The discrete maximum principle for linear simplicial finite element approximations of a reaction-diffusion problem.Linear Algebra Appl. 429 (2008), 2344-2357. Zbl 1154.65086, MR 2456782, 10.1016/j.laa.2008.06.011
Reference: [3] Ciarlet, P. G.: The Finite Element Method for Elliptic Problems.Studies in Mathematics and Its Applications 4. North-Holland, Amsterdam (1978). Zbl 0383.65058, MR 0520174, 10.1016/s0168-2024(08)x7014-6
Reference: [4] Gaddum, J. W.: The sums of the dihedral and trihedral angles in a tetrahedron.Am. Math. Mon. 59 (1952), 370-371. Zbl 0046.37903, MR 0048034, 10.1080/00029890.1952.11988143
Reference: [5] Gaddum, J. W.: Distance sums on a sphere and angle sums in a simplex.Am. Math. Mon. 63 (1956), 91-96. Zbl 0071.36304, MR 0081488, 10.1080/00029890.1956.11988764
Reference: [6] Katsuura, H.: Solid angle sum of a tetrahedron.J. Geom. Graph. 24 (2020), 29-34. Zbl 1447.51020, MR 4128185
Reference: [7] Khademi, A., Korotov, S., Vatne, J. E.: On interpolation error on degenerating prismatic elements.Appl. Math., Praha 63 (2018), 237-257. Zbl 06945731, MR 3833659, 10.21136/AM.2018.0357-17
Reference: [8] Khademi, A., Korotov, S., Vatne, J. E.: On the generalization of the Synge-Křížek maximum angle condition for $d$-simplices.J. Comput. Appl. Math. 358 (2019), 29-33. Zbl 1426.65177, MR 3926696, 10.1016/j.cam.2019.03.003
Reference: [9] Korotov, S., Vatne, J. E.: The minimum angle condition for $d$-simplices.Comput. Math. Appl. 80 (2020), 367-370. Zbl 1446.65100, MR 4099857, 10.1016/j.camwa.2019.05.020
Reference: [10] Liu, L., Davies, K. B., Yuan, K., Křížek, M.: On symmetric pyramidal finite elements.Dyn. Contin. Discrete Impuls. Syst., Ser. B, Appl. Algorithms 11 (2004), 213-227. Zbl 1041.65098, MR 2049777
Reference: [11] Wieners, C.: Conforming discretizations on tetrahedrons, pyramids, prisms and hexahedrons.University Stuttgart, Bericht 97/15 (1997), 1-9.
.

Fulltext not available (moving wall 24 months)

Partner of
EuDML logo