Previous |  Up |  Next

Article

Title: Solving intuitionistic fuzzy multi-objective linear programming problem and its application in supply chain management (English)
Author: Hassanpour, Hassan
Author: Hosseinzadeh, Elham
Author: Moodi, Mahsa
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 68
Issue: 3
Year: 2023
Pages: 269-287
Summary lang: English
.
Category: math
.
Summary: The aim of this paper is solving an intuitionistic fuzzy multi-objective linear programming problem containing intuitionistic fuzzy parameters, intuitionistic fuzzy maximization/minimization, and intuitionistic fuzzy constraints. To do this, a linear ranking function is used to convert the intuitionistic fuzzy parameters to crisp ones first. Then, linear membership and non-membership functions are used to manipulate intuitionistic fuzzy maximization/minimization and intuitionistic fuzzy constraints. Then, a multi-objective optimization problem is formulated containing maximization of membership functions and minimization of non-membership functions. To solve this problem, the minimax and weighted sum methods are used. Then, the described procedure is summarized as an algorithm to solve the problem, and a numerical example is solved by the proposed method. Finally, to investigate the capability and performance of the model, a supplier selection problem, which is one of the important applications in supply chain management, is solved by the proposed algorithm. (English)
Keyword: multi-objective linear programming
Keyword: intuitionistic fuzzy set
Keyword: accuracy function
Keyword: membership function
Keyword: non-membership function
Keyword: supplier selection
MSC: 03F55
MSC: 90B06
MSC: 90C08
MSC: 90C70
idZBL: Zbl 07729497
idMR: MR4586122
DOI: 10.21136/AM.2022.0265-21
.
Date available: 2023-05-04T17:36:38Z
Last updated: 2023-09-13
Stable URL: http://hdl.handle.net/10338.dmlcz/151654
.
Reference: [1] Ahmadini, A. A. H., Ahmad, F.: Solving intuitionistic fuzzy multiobjective linear programming problem under neutrosophic environment.AIMS Math. 6 (2021), 4556-4580. MR 4220424, 10.3934/math.2021269
Reference: [2] Amid, A., Ghodsypour, S. H., O'Brien, C.: A weighted max-min model for fuzzy multi-objective supplier selection in a supply chain.Int. J. Prod. Econ. 131 (2011), 139-145. 10.1016/j.ijpe.2010.04.044
Reference: [3] Angelov, P. P.: Optimization in an intuitionistic fuzzy environment.Fuzzy Sets Syst. 86 (1997), 299-306. Zbl 0915.90258, MR 1454190, 10.1016/S0165-0114(96)00009-7
Reference: [4] Atanassov, K. T.: Intuitionistic fuzzy sets.Fuzzy Sets Syst. 20 (1986), 87-96. Zbl 0631.03040, MR 0852871, 10.1016/S0165-0114(86)80034-3
Reference: [5] Bharati, S. K., Singh, S. R.: Solution of multiobjective linear programming problems in interval-valued intuitionistic fuzzy environment.Soft Comput. 23 (2019), 77-84. Zbl 1415.90115, 10.1007/s00500-018-3100-6
Reference: [6] Chang, K.-H.: A novel supplier selection method that integrates the intuitionistic fuzzy weighted averaging method and a soft set with imprecise data.Ann. Oper. Res. 272 (2019), 139-157. Zbl 1434.90018, MR 3895140, 10.1007/s10479-017-2718-6
Reference: [7] Ehrgott, M.: Multicriteria Optimization.Springer, Berlin (2005). Zbl 1132.90001, MR 2143243, 10.1007/3-540-27659-9
Reference: [8] Garg, H.: A new generalized improved score function of interval-valued intuitionistic fuzzy sets and applications in expert systems.Appl. Soft Comput. 38 (2016), 988-999. 10.1016/j.asoc.2015.10.040
Reference: [9] Kabiraj, A., Nayak, P. K., Raha, S.: Solving intuitionistic fuzzy linear programming problem.Int. J. Intelligence Sci. 9 (2019), 44-58. 10.4236/ijis.2019.91003
Reference: [10] Li, D.-F.: A ratio ranking method of triangular intuitionistic fuzzy numbers and its application to MADM problems.Comput. Math. Appl. 60 (2010), 1557-1570. Zbl 1202.91054, MR 2679124, 10.1016/j.camwa.2010.06.039
Reference: [11] Li, D.-F.: Linear programming method for MADM with interval-valued intuitionistic fuzzy sets.Expert Syst. Appl. 37 (2010), 5939-5945. 10.1016/j.eswa.2010.02.011
Reference: [12] Malhotra, R., Bharati, S. K.: Intuitionistic fuzzy two stage multiobjective transportation problems.Adv. Theor. Appl. Math. 11 (2016), 305-316.
Reference: [13] Mohan, S., Kannusamy, A. P., Sidhu, S. K.: Solution of intuitionistic fuzzy linear programming problem by dual simplex algorithm and sensitivity analysis.Comput. Intell. 37 (2021), 852-872. MR 4270699, 10.1111/coin.12435
Reference: [14] Qu, G., Qu, W., Zhang, Z., Wang, J.: Choquet integral correlation coefficient of intuitionistic fuzzy sets and its applications.J. Intell. Fuzzy Syst. 33 (2017), 543-553. Zbl 1376.68134, 10.3233/JIFS-162131
Reference: [15] Sakawa, M.: Fuzzy Sets and Interactive Multiobjective Optimization.Springer, New York (1993). Zbl 0842.90070, MR 1216139, 10.1007/978-1-4899-1633-4
Reference: [16] Singh, S. K., Yadav, S. P.: Modeling and optimization of multi objective non-linear programming problem in intuitionistic fuzzy environment.Appl. Math. Modelling 39 (2015), 4617-4629. Zbl 1443.90067, MR 3354856, 10.1016/j.apm.2015.03.064
Reference: [17] Singh, S. K., Yadav, S. P.: A new approach for solving intuitionistic fuzzy transportation problem of type-2.Ann. Oper. Res. 243 (2016), 349-363. Zbl 1348.90658, MR 3529807, 10.1007/s10479-014-1724-1
Reference: [18] Tooranloo, H. S., Iranpour, A.: Supplier selection and evaluation using interval-valued intuitionistic fuzzy AHP method.Int. J. Procurement Management 10 (2017), 539-554. 10.1504/IJPM.2017.086399
Reference: [19] Wan, S., Dong, J.: A possibility degree method for interval-valued intuitionistic fuzzy multi-attribute group decision making.J. Comput. Syst. Sci. 80 (2014), 237-256. Zbl 1311.68156, MR 3105919, 10.1016/j.jcss.2013.07.007
Reference: [20] Wan, S., Dong, J.: A novel extension of best-worst method with intuitionistic fuzzy reference comparisons.IEEE Trans. Fuzzy Syst. 30 (2022), 1698-1711. 10.1109/TFUZZ.2021.3064695
Reference: [21] Wan, S.-P., Li, D.-F.: Atanassov's intuitionistic fuzzy programming method for heterogeneous multiattribute group decision making with Atanassov's intuitionistic fuzzy truth degrees.IEEE Trans. Fuzzy Syst. 22 (2013), 300-312. 10.1109/TFUZZ.2013.2253107
Reference: [22] Wan, S.-P., Li, D.-F.: Fuzzy mathematical programming approach to heterogeneous multiattribute decision-making with interval-valued intuitionistic fuzzy truth degrees.Inf. Sci. 325 (2015), 484-503. Zbl 1390.91119, MR 3392316, 10.1016/j.ins.2015.07.014
Reference: [23] Wan, S.-P., Wang, F., Dong, J.-Y.: A novel group decision making method with intuitionistic fuzzy preference relations for RFID technology selection.Appl. Soft Comput. 38 (2016), 405-422. 10.1016/j.asoc.2015.09.039
Reference: [24] Wan, S.-P., Wang, F., Lin, L.-L., Dong, J.-Y.: An intuitionistic fuzzy linear programming method for logistics outsourcing provider selection.Knowledge-Based Syst. 82 (2015), 80-94. 10.1016/j.knosys.2015.02.027
Reference: [25] Wan, S.-P., Wang, F., Xu, G.-L., Dong, J.-Y., Tang, J.: An intuitionistic fuzzy programming method for group decision making with interval-valued fuzzy preference relations.Fuzzy Optim. Decis. Mak. 16 (2017), 269-295. Zbl 1428.90090, MR 3682924, 10.1007/s10700-016-9250-z
Reference: [26] Wei, A.-P., Li, D.-F., Lin, P.-P., Jiang, B.-Q.: An information-based score function of interval-valued intuitionistic fuzzy sets and its application in multiattribute decision making.Soft Comput. 25 (2021), 1913-1923. Zbl 7560958, 10.1007/s00500-020-05265-0
Reference: [27] Ye, J.: Expected value method for intuitionistic trapezoidal fuzzy multicriteria decision-making problems.Expert Syst. Appl. 38 (2011), 11730-11734. 10.1016/j.eswa.2011.03.059
.

Fulltext not available (moving wall 24 months)

Partner of
EuDML logo