Previous |  Up |  Next

Article

Title: Finite time stability and relative controllability of second order linear differential systems with pure delay (English)
Author: Li, Mengmeng
Author: Fečkan, Michal
Author: Wang, JinRong
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 68
Issue: 3
Year: 2023
Pages: 305-327
Summary lang: English
.
Category: math
.
Summary: We first consider the finite time stability of second order linear differential systems with pure delay via giving a number of properties of delayed matrix functions. We secondly give sufficient and necessary conditions to examine that a linear delay system is relatively controllable. Further, we apply the fixed-point theorem to derive a relatively controllable result for a semilinear system. Finally, some examples are presented to illustrate the validity of the main theorems. (English)
Keyword: finite time stability
Keyword: relative controllability
Keyword: second order
Keyword: delayed matrix function
MSC: 34K05
MSC: 93C05
idZBL: Zbl 07729499
idMR: MR4586124
DOI: 10.21136/AM.2022.0249-21
.
Date available: 2023-05-04T17:37:51Z
Last updated: 2023-09-13
Stable URL: http://hdl.handle.net/10338.dmlcz/151656
.
Reference: [1] Diblík, J., Fečkan, M., Pospíšil, M.: Representation of a solution of the Cauchy problem for an oscillating system with two delays and permutable matrices.Ukr. Math. J. 65 (2013), 64-76. Zbl 1283.34057, MR 3104884, 10.1007/s11253-013-0765-y
Reference: [2] Diblík, J., Fečkan, M., Pospíšil, M.: On the new control functions for linear discrete delay systems.SIAM J. Control Optim. 52 (2014), 1745-1760. Zbl 1295.93008, MR 3206982, 10.1137/140953654
Reference: [3] Diblík, J., Khusainov, D. Y., Růžičková, M.: Controllability of linear discrete systems with constant coefficients and pure delay.SIAM J. Control Optim. 47 (2008), 1140-1149. Zbl 1161.93004, MR 2407011, 10.1137/070689085
Reference: [4] Elshenhab, A. M., Wang, X. T.: Representation of solutions of linear differential systems with pure delay and multiple delays with linear parts given by non-permutable matrices.Appl. Math. Comput. 410 (2021), Article ID 126443, 13 pages. Zbl 07425968, MR 4274895, 10.1016/j.amc.2021.126443
Reference: [5] Fečkan, M., Wang, J., Zhou, Y.: Controllability of fractional functional evolution equations of Sobolev type via characteristic solution operators.J. Optim. Theory Appl. 156 (2013), 79-95. Zbl 1263.93031, MR 3019302, 10.1007/s10957-012-0174-7
Reference: [6] Gantmakher, F. R.: Theory of Matrices.Nauka, Moskva (1988), Russian. Zbl 0666.15002, MR 0986246
Reference: [7] Khusainov, D. Y., Diblík, J., Růžičková, M., Lukáčová, J.: Representation of a solution of the Cauchy problem for an oscillating system with pure delay.Nonlinear Oscil., N.Y. 11 (2008), 276-285. Zbl 1276.34055, MR 2510692, 10.1007/s11072-008-0030-8
Reference: [8] Khusainov, D. Y., Shuklin, G. V.: Relative controllability in systems with pure delay.Int. Appl. Mech. 41 (2005), 210-221. Zbl 1100.34062, MR 2190935, 10.1007/s10778-005-0079-3
Reference: [9] Lazarević, M. P., Spasić, A. M.: Finite-time stability analysis of fractional order time-delay systems: Gronwall's approach.Math. Comput. Modelling 49 (2009), 475-481. Zbl 1165.34408, MR 2483650, 10.1016/j.mcm.2008.09.011
Reference: [10] Li, M., Wang, J.: Finite time stability of fractional delay differential equations.Appl. Math. Lett. 64 (2017), 170-176. Zbl 1354.34130, MR 3564757, 10.1016/j.aml.2016.09.004
Reference: [11] Li, M., Wang, J.: Exploring delayed Mittag-Leffler type matrix functions to study finite time stability of fractional delay differential equations.Appl. Math. Comput. 324 (2018), 254-265. Zbl 1426.34110, MR 3743671, 10.1016/j.amc.2017.11.063
Reference: [12] Li, X., Yang, X., Song, S.: Lyapunov conditions for finite-time stability of time-varying time-delay systems.Automatica 103 (2019), 135-140. Zbl 1415.93188, MR 3911637, 10.1016/j.automatica.2019.01.031
Reference: [13] Liang, C., Wang, J., O'Regan, D.: Controllability of nonlinear delay oscillating systems.Electron. J. Qual. Theory Differ. Equ. 2017 (2017), Article ID 47, 18 pages. Zbl 1413.34256, MR 3661723, 10.14232/ejqtde.2017.1.47
Reference: [14] Liang, C., Wang, J., O'Regan, D.: Representation of a solution for a fractional linear system with pure delay.Appl. Math. Lett. 77 (2018), 72-78. Zbl 1462.34105, MR 3725232, 10.1016/j.aml.2017.09.015
Reference: [15] Pospíšil, M.: Relative controllability of neutral differential equations with a delay.SIAM J. Control Optim. 55 (2017), 835-855. Zbl 1368.34093, MR 3625799, 10.1137/15M1024287
Reference: [16] Pospíšil, M.: Representation of solutions of systems of linear differential equations with multiple delays and nonpermutable variable coefficients.Math. Model. Anal. 25 (2020), 303-322. Zbl 1476.34143, MR 4116589, 10.3846/mma.2020.11194
Reference: [17] Si, Y., Wang, J., Fečkan, M.: Controllability of linear and nonlinear systems governed by Stieltjes differential equations.Appl. Math. Comput. 376 (2020), Article ID 125139, 24 pages. Zbl 1475.93015, MR 4070317, 10.1016/j.amc.2020.125139
Reference: [18] Wang, J., Fečkan, M., Zhou, Y.: Controllability of Sobolev type fractional evolution systems.Dyn. Partial Differ. Equ. 11 (2014), 71-87. Zbl 1314.47117, MR 3194051, 10.4310/DPDE.2014.v11.n1.a4
Reference: [19] Wu, G.-C., Baleanu, D., Zeng, S.-D.: Finite-time stability of discrete fractional delay systems: Gronwall inequality and stability criterion.Commun. Nonlinear Sci. Numer. Simul. 57 (2018), 299-308. Zbl 07263288, MR 3724839, 10.1016/j.cnsns.2017.09.001
Reference: [20] You, Z., Wang, J., O'Regan, D., Zhou, Y.: Relative controllability of delay differential systems with impulses and linear parts defined by permutable matrices.Math. Methods Appl. Sci. 42 (2019), 954-968. Zbl 1410.34235, MR 3905829, 10.1002/mma.5400
.

Fulltext not available (moving wall 24 months)

Partner of
EuDML logo