Title: | Hermitian-Toeplitz determinants and some coefficient functionals for the starlike functions (English) |
Author: | Kumar, Deepak |
Author: | Kumar, Virendra |
Author: | Das, Laxminarayan |
Language: | English |
Journal: | Applications of Mathematics |
ISSN: | 0862-7940 (print) |
ISSN: | 1572-9109 (online) |
Volume: | 68 |
Issue: | 3 |
Year: | 2023 |
Pages: | 289-304 |
Summary lang: | English |
. | |
Category: | math |
. | |
Summary: | In this paper, we have determined the sharp lower and upper bounds on the fourth-order Hermitian-Toeplitz determinant for starlike functions with real coefficients. We also obtained the sharp bounds on the Hermitian-Toeplitz determinants of inverse and logarithmic coefficients for starlike functions with complex coefficients. Sharp bounds on the modulus of differences and difference of moduli of logarithmic and inverse coefficients are obtained. In our investigation, it has been found that the bound on the third-order Hermitian-Toeplitz determinant for starlike functions and its inverse coefficients is invariant.\looseness +1 (English) |
Keyword: | starlike function |
Keyword: | Hermitian-Toeplitz determinant |
Keyword: | logarithmic coefficient |
Keyword: | inverse coefficient |
MSC: | 30C45 |
MSC: | 30C50 |
idZBL: | Zbl 07729498 |
idMR: | MR4586123 |
DOI: | 10.21136/AM.2022.0092-22 |
. | |
Date available: | 2023-05-04T17:37:21Z |
Last updated: | 2023-09-13 |
Stable URL: | http://hdl.handle.net/10338.dmlcz/151655 |
. | |
Reference: | [1] Ali, M. F., Thomas, D. K., Vasudevarao, A.: Toeplitz determinants whose elements are the coefficients of analytic and univalent functions.Bull. Aust. Math. Soc. 97 (2018), 253-264. Zbl 1390.30018, MR 3772655, 10.1017/S0004972717001174 |
Reference: | [2] Babalola, K. O.: On $H_{3,1}$ Hankel determinants for some classes of univalent functions.Inequality Theory & Applications 6 Nova Science Publishers, New York (2010), 1-7. |
Reference: | [3] Cho, N. E., Kumar, V., Kwon, O. S., Sim, Y. J.: Coefficient bounds for certain subclasses of starlike functions.J. Inequal. Appl. 2019 (2019), Article ID 276, 13 pages. Zbl 07459304, MR 4025537, 10.1186/s13660-019-2231-3 |
Reference: | [4] Cudna, K., Kwon, O. S., Lecko, A., Sim, Y. J., Śmiarowska, B.: The second and third-order Hermitian Toeplitz determinants for starlike and convex functions of order $\alpha$.Bol. Soc. Mat. Mex., III. Ser. 26 (2020), 361-375. Zbl 1435.30044, MR 4110457, 10.1007/s40590-019-00271-1 |
Reference: | [5] Duren, P. L.: Univalent Functions.Grundlehren der Mathematischen Wissenschaften 259. Springer, New York (1983). Zbl 0514.30001, MR 0708494 |
Reference: | [6] Hayman, W. K.: On the second Hankel determinant of mean univalent functions.Proc. Lond. Math. Soc., III. Ser. 18 (1968), 77-94. Zbl 0158.32101, MR 0219715, 10.1112/plms/s3-18.1.77 |
Reference: | [7] Janteng, A., Halim, S. A., Darus, M.: Hankel determinant for starlike and convex functions.Int. J. Math. Anal., Ruse 1 (2007), 619-625. Zbl 1137.30308, MR 2370200 |
Reference: | [8] Jastrzębski, P., Kowalczyk, B., Kwon, O. S., Sim, Y. J.: Hermitian Toeplitz determinants of the second and third-order for classes of close-to-star functions.Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM 114 (2020), Article ID 166, 14 pages. Zbl 1446.30027, MR 4123919, 10.1007/s13398-020-00895-3 |
Reference: | [9] Kowalczyk, B., Lecko, A.: Second Hankel determinant of logarithmic coefficients of convex and starlike functions.Bull. Aust. Math. Soc. 105 (2022), 458-467. Zbl 07527748, MR 4419590, 10.1017/S0004972721000836 |
Reference: | [10] Kowalczyk, B., Lecko, A.: Second Hankel determinant of logarithmic coefficients of convex and starlike functions of order alpha.Bull. Malays. Math. Sci. Soc. (2) 45 (2022), 727-740. Zbl 1486.30040, MR 4380027, 10.1007/s40840-021-01217-5 |
Reference: | [11] Kowalczyk, B., Lecko, A., Sim, Y. J.: The sharp bound for the Hankel determinant of the third kind for convex functions.Bull. Aust. Math. Soc. 97 (2018), 435-445. Zbl 1394.30007, MR 3802458, 10.1017/S0004972717001125 |
Reference: | [12] Kumar, V.: Hermitian-Toeplitz determinants for certain classes of close-to-convex functions.Bull. Iran. Math. Soc. 48 (2022), 1093-1109. Zbl 1490.30010, MR 4421115, 10.1007/s41980-021-00564-0 |
Reference: | [13] Kumar, V., Cho, N. E.: Hermitian-Toeplitz determinants for functions with bounded turning.Turk. J. Math. 45 (2021), 2678-2687. Zbl 07579577, MR 4360588, 10.3906/mat-2101-104 |
Reference: | [14] Kumar, V., Kumar, S.: Bounds on Hermitian-Toeplitz and Hankel determinants for strongly starlike functions.Bol. Soc. Mat. Mex., III. Ser. 27 (2021), Article ID 55, 16 pages. Zbl 1469.30027, MR 4266686, 10.1007/s40590-021-00362-y |
Reference: | [15] Kumar, V., Nagpal, S., Cho, N. E.: Coefficient functionals for non-Bazilevič functions.Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM 116 (2022), Article ID 44, 14 pages. Zbl 1482.30041, MR 4344855, 10.1007/s13398-021-01185-2 |
Reference: | [16] Kumar, V., Srivastava, R., Cho, N. E.: Sharp estimation of Hermitian-Toeplitz determinants for Janowski type starlike and convex functions.Miskolc Math. Notes 21 (2020), 939-952. Zbl 1474.30086, MR 4194805, 10.18514/MMN.2020.3361 |
Reference: | [17] Kwon, O. S., Lecko, A., Sim, Y. J.: The bound of the Hankel determinant of the third kind for starlike functions.Bull. Malays. Math. Sci. Soc. (2) 42 (2019), 767-780. Zbl 1419.30007, MR 3935352, 10.1007/s40840-018-0683-0 |
Reference: | [18] Lecko, A., Sim, Y. J., Śmiarowska, B.: The fourth-order Hermitian Toeplitz determinant for convex functions.Anal. Math. Phys. 10 (2020), Article ID 39, 11 pages. Zbl 1450.30028, MR 4137139, 10.1007/s13324-020-00382-3 |
Reference: | [19] Lee, S. K., Ravichandran, V., Supramaniam, S.: Bounds for the second Hankel determinant of certain univalent functions.J. Inequal. Appl. 2013 (2013), Article ID 281, 17 pages. Zbl 1302.30018, MR 3073988, 10.1186/1029-242X-2013-281 |
Reference: | [20] Libera, R. J., Złotkiewicz, E. J.: Early coefficients of the inverse of a regular convex function.Proc. Am. Math. Soc. 85 (1982), 225-230. Zbl 0464.30019, MR 0652447, 10.1090/S0002-9939-1982-0652447-5 |
Reference: | [21] Libera, R. J., Złotkiewicz, E. J.: Coefficient bounds for the inverse of a function with derivative in $P$.Proc. Am. Math. Soc. 87 (1983), 251-257. Zbl 0488.30010, MR 0681830, 10.1090/S0002-9939-1983-0681830-8 |
Reference: | [22] Löwner, K.: Untersuchungen über schlichte konforme Abbildungen des Einheitskreises. I.Math. Ann. 89 (1923), 103-121 German \99999JFM99999 49.0714.01. MR 1512136, 10.1007/BF01448091 |
Reference: | [23] Sim, Y. J., Thomas, D. K.: On the difference of inverse coefficients of univalent functions.Symmetry 12 (2020), Article ID 2040, 14 pages. 10.3390/sym12122040 |
Reference: | [24] Thomas, D. K.: On the coefficients of strongly starlike functions.Indian J. Math. 58 (2016), 135-146. Zbl 1360.30015, MR 3559483 |
. |
Fulltext not available (moving wall 24 months)