Previous |  Up |  Next

Article

Title: Hermitian-Toeplitz determinants and some coefficient functionals for the starlike functions (English)
Author: Kumar, Deepak
Author: Kumar, Virendra
Author: Das, Laxminarayan
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 68
Issue: 3
Year: 2023
Pages: 289-304
Summary lang: English
.
Category: math
.
Summary: In this paper, we have determined the sharp lower and upper bounds on the fourth-order Hermitian-Toeplitz determinant for starlike functions with real coefficients. We also obtained the sharp bounds on the Hermitian-Toeplitz determinants of inverse and logarithmic coefficients for starlike functions with complex coefficients. Sharp bounds on the modulus of differences and difference of moduli of logarithmic and inverse coefficients are obtained. In our investigation, it has been found that the bound on the third-order Hermitian-Toeplitz determinant for starlike functions and its inverse coefficients is invariant.\looseness +1 (English)
Keyword: starlike function
Keyword: Hermitian-Toeplitz determinant
Keyword: logarithmic coefficient
Keyword: inverse coefficient
MSC: 30C45
MSC: 30C50
idZBL: Zbl 07729498
idMR: MR4586123
DOI: 10.21136/AM.2022.0092-22
.
Date available: 2023-05-04T17:37:21Z
Last updated: 2023-09-13
Stable URL: http://hdl.handle.net/10338.dmlcz/151655
.
Reference: [1] Ali, M. F., Thomas, D. K., Vasudevarao, A.: Toeplitz determinants whose elements are the coefficients of analytic and univalent functions.Bull. Aust. Math. Soc. 97 (2018), 253-264. Zbl 1390.30018, MR 3772655, 10.1017/S0004972717001174
Reference: [2] Babalola, K. O.: On $H_{3,1}$ Hankel determinants for some classes of univalent functions.Inequality Theory & Applications 6 Nova Science Publishers, New York (2010), 1-7.
Reference: [3] Cho, N. E., Kumar, V., Kwon, O. S., Sim, Y. J.: Coefficient bounds for certain subclasses of starlike functions.J. Inequal. Appl. 2019 (2019), Article ID 276, 13 pages. Zbl 07459304, MR 4025537, 10.1186/s13660-019-2231-3
Reference: [4] Cudna, K., Kwon, O. S., Lecko, A., Sim, Y. J., Śmiarowska, B.: The second and third-order Hermitian Toeplitz determinants for starlike and convex functions of order $\alpha$.Bol. Soc. Mat. Mex., III. Ser. 26 (2020), 361-375. Zbl 1435.30044, MR 4110457, 10.1007/s40590-019-00271-1
Reference: [5] Duren, P. L.: Univalent Functions.Grundlehren der Mathematischen Wissenschaften 259. Springer, New York (1983). Zbl 0514.30001, MR 0708494
Reference: [6] Hayman, W. K.: On the second Hankel determinant of mean univalent functions.Proc. Lond. Math. Soc., III. Ser. 18 (1968), 77-94. Zbl 0158.32101, MR 0219715, 10.1112/plms/s3-18.1.77
Reference: [7] Janteng, A., Halim, S. A., Darus, M.: Hankel determinant for starlike and convex functions.Int. J. Math. Anal., Ruse 1 (2007), 619-625. Zbl 1137.30308, MR 2370200
Reference: [8] Jastrzębski, P., Kowalczyk, B., Kwon, O. S., Sim, Y. J.: Hermitian Toeplitz determinants of the second and third-order for classes of close-to-star functions.Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM 114 (2020), Article ID 166, 14 pages. Zbl 1446.30027, MR 4123919, 10.1007/s13398-020-00895-3
Reference: [9] Kowalczyk, B., Lecko, A.: Second Hankel determinant of logarithmic coefficients of convex and starlike functions.Bull. Aust. Math. Soc. 105 (2022), 458-467. Zbl 07527748, MR 4419590, 10.1017/S0004972721000836
Reference: [10] Kowalczyk, B., Lecko, A.: Second Hankel determinant of logarithmic coefficients of convex and starlike functions of order alpha.Bull. Malays. Math. Sci. Soc. (2) 45 (2022), 727-740. Zbl 1486.30040, MR 4380027, 10.1007/s40840-021-01217-5
Reference: [11] Kowalczyk, B., Lecko, A., Sim, Y. J.: The sharp bound for the Hankel determinant of the third kind for convex functions.Bull. Aust. Math. Soc. 97 (2018), 435-445. Zbl 1394.30007, MR 3802458, 10.1017/S0004972717001125
Reference: [12] Kumar, V.: Hermitian-Toeplitz determinants for certain classes of close-to-convex functions.Bull. Iran. Math. Soc. 48 (2022), 1093-1109. Zbl 1490.30010, MR 4421115, 10.1007/s41980-021-00564-0
Reference: [13] Kumar, V., Cho, N. E.: Hermitian-Toeplitz determinants for functions with bounded turning.Turk. J. Math. 45 (2021), 2678-2687. Zbl 07579577, MR 4360588, 10.3906/mat-2101-104
Reference: [14] Kumar, V., Kumar, S.: Bounds on Hermitian-Toeplitz and Hankel determinants for strongly starlike functions.Bol. Soc. Mat. Mex., III. Ser. 27 (2021), Article ID 55, 16 pages. Zbl 1469.30027, MR 4266686, 10.1007/s40590-021-00362-y
Reference: [15] Kumar, V., Nagpal, S., Cho, N. E.: Coefficient functionals for non-Bazilevič functions.Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM 116 (2022), Article ID 44, 14 pages. Zbl 1482.30041, MR 4344855, 10.1007/s13398-021-01185-2
Reference: [16] Kumar, V., Srivastava, R., Cho, N. E.: Sharp estimation of Hermitian-Toeplitz determinants for Janowski type starlike and convex functions.Miskolc Math. Notes 21 (2020), 939-952. Zbl 1474.30086, MR 4194805, 10.18514/MMN.2020.3361
Reference: [17] Kwon, O. S., Lecko, A., Sim, Y. J.: The bound of the Hankel determinant of the third kind for starlike functions.Bull. Malays. Math. Sci. Soc. (2) 42 (2019), 767-780. Zbl 1419.30007, MR 3935352, 10.1007/s40840-018-0683-0
Reference: [18] Lecko, A., Sim, Y. J., Śmiarowska, B.: The fourth-order Hermitian Toeplitz determinant for convex functions.Anal. Math. Phys. 10 (2020), Article ID 39, 11 pages. Zbl 1450.30028, MR 4137139, 10.1007/s13324-020-00382-3
Reference: [19] Lee, S. K., Ravichandran, V., Supramaniam, S.: Bounds for the second Hankel determinant of certain univalent functions.J. Inequal. Appl. 2013 (2013), Article ID 281, 17 pages. Zbl 1302.30018, MR 3073988, 10.1186/1029-242X-2013-281
Reference: [20] Libera, R. J., Złotkiewicz, E. J.: Early coefficients of the inverse of a regular convex function.Proc. Am. Math. Soc. 85 (1982), 225-230. Zbl 0464.30019, MR 0652447, 10.1090/S0002-9939-1982-0652447-5
Reference: [21] Libera, R. J., Złotkiewicz, E. J.: Coefficient bounds for the inverse of a function with derivative in $P$.Proc. Am. Math. Soc. 87 (1983), 251-257. Zbl 0488.30010, MR 0681830, 10.1090/S0002-9939-1983-0681830-8
Reference: [22] Löwner, K.: Untersuchungen über schlichte konforme Abbildungen des Einheitskreises. I.Math. Ann. 89 (1923), 103-121 German \99999JFM99999 49.0714.01. MR 1512136, 10.1007/BF01448091
Reference: [23] Sim, Y. J., Thomas, D. K.: On the difference of inverse coefficients of univalent functions.Symmetry 12 (2020), Article ID 2040, 14 pages. 10.3390/sym12122040
Reference: [24] Thomas, D. K.: On the coefficients of strongly starlike functions.Indian J. Math. 58 (2016), 135-146. Zbl 1360.30015, MR 3559483
.

Fulltext not available (moving wall 24 months)

Partner of
EuDML logo