Title: | On wsq-primary ideals (English) |
Author: | Aslankarayiğit Uğurlu, Emel |
Author: | Bouba, El Mehdi |
Author: | Tekir, Ünsal |
Author: | Koç, Suat |
Language: | English |
Journal: | Czechoslovak Mathematical Journal |
ISSN: | 0011-4642 (print) |
ISSN: | 1572-9141 (online) |
Volume: | 73 |
Issue: | 2 |
Year: | 2023 |
Pages: | 415-429 |
Summary lang: | English |
. | |
Category: | math |
. | |
Summary: | We introduce weakly strongly quasi-primary (briefly, wsq-primary) ideals in commutative rings. Let $R$ be a commutative ring with a nonzero identity and $Q$ a proper ideal of $R$. The proper ideal $Q$ is said to be a weakly strongly quasi-primary ideal if whenever $0\neq ab\in Q$ for some $a,b\in R$, then $a^{2}\in Q$ or $b\in \sqrt {Q}.$ Many examples and properties of wsq-primary ideals are given. Also, we characterize nonlocal Noetherian von Neumann regular rings, fields, nonlocal rings over which every proper ideal is wsq-primary, and zero dimensional rings over which every proper ideal is wsq-primary. Finally, we study finite union of wsq-primary ideals. (English) |
Keyword: | primary ideal |
Keyword: | weakly primary ideal |
Keyword: | quasi-primary ideal |
Keyword: | weakly 2-prime ideal |
Keyword: | strongly quasi-primary ideal |
MSC: | 05C25 |
MSC: | 13A15 |
MSC: | 13A99 |
MSC: | 13F30 |
idZBL: | Zbl 07729515 |
idMR: | MR4586902 |
DOI: | 10.21136/CMJ.2023.0259-21 |
. | |
Date available: | 2023-05-04T17:44:24Z |
Last updated: | 2023-09-13 |
Stable URL: | http://hdl.handle.net/10338.dmlcz/151665 |
. | |
Reference: | [1] Almahdi, F. A. A., Tamekkante, M., Mamouni, A.: Rings over which every semi-primary ideal is 1-absorbing primary.Commun. Algebra 48 (2020), 3838-3845. Zbl 1451.13007, MR 4124662, 10.1080/00927872.2020.1749645 |
Reference: | [2] Anderson, D. F., (eds.), D. E. Dobbs: Zero-Dimensional Commutative Rings.Lecture Notes in Pure and Applied Mathematics. 171. Marcel Dekker, New York (1995). Zbl 0872.00033, MR 1335699 |
Reference: | [3] Anderson, D. D., Smith, E.: Weakly prime ideals.Houston J. Math. 29 (2003), 831-840. Zbl 1086.13500, MR 2045656 |
Reference: | [4] Anderson, D. D., Winders, M.: Idealization of a module.J. Commut. Algebra 1 (2009), 3-56. Zbl 1194.13002, MR 2462381, 10.1216/JCA-2009-1-1-3 |
Reference: | [5] Atiyah, M. F., Macdonald, I. G.: Introduction to Commutative Algebra.Addison-Wesley, Reading (1969). Zbl 0175.03601, MR 0242802 |
Reference: | [6] Badawi, A.: On 2-absorbing ideals of commutative rings.Bull. Aust. Math. Soc. 75 (2007), 417-429. Zbl 1120.13004, MR 2331019, 10.1017/S0004972700039344 |
Reference: | [7] Badawi, A., Sonmez, D., Yesilot, G.: On weakly $\delta$-semiprimary ideals of commutative rings.Algebra Colloq. 25 (2018), 387-398. Zbl 1401.13007, MR 3843092, 10.1142/S1005386718000287 |
Reference: | [8] Badawi, A., Tekir, U., Yetkin, E.: On weakly 2-absorbing primary ideals of commutative rings.J. Korean Math. Soc. 52 (2015), 97-111. Zbl 1315.13008, MR 3299372, 10.4134/JKMS.2015.52.1.097 |
Reference: | [9] Beddani, C., Messirdi, W.: 2-prime ideals and their applications.J. Algebra Appl. 15 (2016), Article ID 1650051, 11 pages. Zbl 1338.13038, MR 3454713, 10.1142/S0219498816500511 |
Reference: | [10] Călugăreanu, G.: $UN$-rings.J. Algebra Appl. 15 (2016), Article ID 1650182, 9 pages. Zbl 1397.16037, MR 3575972, 10.1142/S0219498816501826 |
Reference: | [11] Chen, J.: Infinite prime avoidance.Beitr. Algebra Geom. 62 (2021), 587-593. Zbl 1472.13004, MR 4290331, 10.1007/s13366-020-00507-6 |
Reference: | [12] Atani, S. Ebrahimi, Farzalipour, F.: On weakly primary ideals.Georgian Math. J. 12 (2005), 423-429. Zbl 1086.13501, MR 2174944, 10.1515/GMJ.2005.423 |
Reference: | [13] Huckaba, J. A.: Commutative Rings with Zero Divisors.Monographs and Textbooks in Pure and Applied Mathematics 117. Marcel Dekker, New York (1988). Zbl 0637.13001, MR 0938741 |
Reference: | [14] Koç, S.: On weakly 2-prime ideals in commutative rings.Commun. Algebra 49 (2021), 3387-3397. Zbl 1470.13004, MR 4283155, 10.1080/00927872.2021.1897133 |
Reference: | [15] Koc, S., Tekir, U., Ulucak, G.: On strongly quasi primary ideals.Bull. Korean Math. Soc. 56 (2019), 729-743. Zbl 1419.13040, MR 3960633, 10.4134/BKMS.b180522 |
Reference: | [16] Larsen, M. D., McCarthy, P. J.: Multiplicative Theory of Ideals.Pure and Applied Mathematics 43. Academic Press, New York (1971). Zbl 0237.13002, MR 0414528 |
Reference: | [17] Lee, T.-K., Zhou, Y.: Reduced modules.Rings, Modules, Algebras and Abelian Groups Lecture Notes in Pure and Applied Mathematics 236. Marcel Dekker, New York (2004), 365-377. Zbl 1075.16003, MR 2050725 |
Reference: | [18] Pakala, J. V., Shores, T. S.: On compactly packed rings.Pac. J. Math. 97 (1981), 197-201. Zbl 0491.13002, MR 0638188, 10.2140/pjm.1981.97.197 |
Reference: | [19] Redmond, S. P.: An ideal-based zero-divisor graph of a commutative ring.Commun. Algebra 31 (2003), 4425-4443. Zbl 1020.13001, MR 1995544, 10.1081/AGB-120022801 |
Reference: | [20] Satyanarayana, M.: Rings with primary ideals as maximal ideals.Math. Scand. 20 (1967), 52-54. Zbl 0146.26204, MR 0212005, 10.7146/math.scand.a-10818 |
Reference: | [21] Neumann, J. von: On regular rings.Proc. Natl. Acad. Sci. USA 22 (1936), 707-713. Zbl 0015.38802, 10.1073/pnas.22.12.70 |
Reference: | [22] Wang, F., Kim, H.: Foundations of Commutative Rings and Their Modules.Algebra and Applications 22. Springer, Singapore (2016). Zbl 1367.13001, MR 3587977, 10.1007/978-981-10-3337-7 |
Reference: | [23] z, E. Yıldı, Ersoy, B. A., Tekir, Ü., Koç, S.: On $S$-Zariski topology.Commun. Algebra 49 (2021), 1212-1224. Zbl 1477.13012, MR 4219872, 10.1080/00927872.2020.1831006 |
. |
Fulltext not available (moving wall 24 months)