Previous |  Up |  Next

Article

Title: Another version of cosupport in ${\rm D}(R)$ (English)
Author: Qin, Junquan
Author: Yang, Xiaoyan
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 73
Issue: 2
Year: 2023
Pages: 431-452
Summary lang: English
.
Category: math
.
Summary: The goal of the article is to develop a theory dual to that of support in the derived category ${\rm D}(R)$. This is done by introducing `big' and `small' cosupport for complexes that are different from the cosupport in D. J. Benson, S. B. Iyengar, H. Krause (2012). We give some properties for cosupport that are similar, or rather dual, to those of support for complexes, study some relations between `big' and `small' cosupport and give some comparisons of support and cosupport. Finally, we investigate the dual notion of associated primes. (English)
Keyword: cosupport
Keyword: support
Keyword: coassociated prime
Keyword: associated prime
MSC: 13D07
MSC: 13D09
MSC: 13E05
idZBL: Zbl 07729516
idMR: MR4586903
DOI: 10.21136/CMJ.2023.0282-21
.
Date available: 2023-05-04T17:44:57Z
Last updated: 2023-09-13
Stable URL: http://hdl.handle.net/10338.dmlcz/151666
.
Reference: [1] Benson, D. J., Iyengar, S. B., Krause, H.: Local cohomology and support for triangulated categories.Ann. Sci. Éc. Norm. Supér. (4) 41 (2008), 575-621. Zbl 1171.18007, MR 2489634, 10.24033/asens.2076
Reference: [2] Benson, D. J., Iyengar, S. B., Krause, H.: Colocalizing subcategories and cosupport.J. Reine Angew. Math. 673 (2012), 161-207. Zbl 1271.18012, MR 2999131, 10.1515/CRELLE.2011.180
Reference: [3] Brodmann, M. P., Sharp, R. Y.: Local Cohomology: An Algebraic Introduction with Geometric Applications.Cambridge Studies in Advanced Mathematics 60. Cambridge University Press, Cambridge (1998). Zbl 0903.13006, MR 1613627, 10.1017/CBO9780511629204
Reference: [4] Christensen, L. W.: Sequences for complexes.Math. Scand. 89 (2001), 161-180. Zbl 1021.13014, MR 1868172, 10.7146/math.scand.a-14336
Reference: [5] Christensen, L. W., Foxby, H.-B.: Hyperhomological Algebra with Applications to Commutative Rings.Available at {\let \relax\brokenlink{https://www.math.ttu.edu/ lchriste/download/918-}{final.pdf}} (2006), 111 pages.
Reference: [6] Foxby, H.-B.: Bounded complexes of flat modules.J. Pure Appl. Algebra 15 (1979), 149-172. Zbl 0411.13006, MR 0535182, 10.1016/0022-4049(79)90030-6
Reference: [7] Grothendieck, A.: Local Cohomology.Lecture Notes in Mathematics 41. Springer, New York (1967). Zbl 0185.49202, MR 0224620, 10.1007/BFb0073971
Reference: [8] Matlis, E.: The Koszul complex and duality.Commun. Algebra 1 (1974), 87-144. Zbl 0277.13011, MR 0344241, 10.1080/00927877408548611
Reference: [9] Melkersson, L., Schenzel, P.: The co-localization of an Artinian module.Proc. Edinb. Math. Soc., II. Ser. 38 (1995), 121-131. Zbl 0824.13011, MR 1317331, 10.1017/S0013091500006258
Reference: [10] Neeman, A.: The chromatic tower for $D(R)$.Topology 31 (1992), 519-532. Zbl 0793.18008, MR 1174255, 10.1016/0040-9383(92)90047-L
Reference: [11] Neeman, A.: Colocalizing subcategories of $D(R)$.J. Reine Angew. Math. 653 (2011), 221-243. Zbl 1221.13030, MR 2794632, 10.1515/crelle.2011.028
Reference: [12] Richardson, A. S.: Co-localization, co-support and local homology.Rocky Mt. J. Math. 36 (2006), 1679-1703. Zbl 1134.13008, MR 2285629, 10.1216/rmjm/1181069391
Reference: [13] Sather-Wagstaff, S., Wicklein, R.: Support and adic finiteness for complexes.Commun. Algebra 45 (2017), 2569-2592. Zbl 1386.13046, MR 3594539, 10.1080/00927872.2015.1087008
Reference: [14] Yassemi, S.: Coassociated primes.Commun. Algebra 23 (1995), 1473-1498. Zbl 0832.13004, MR 1317409, 10.1080/00927879508825288
.

Fulltext not available (moving wall 24 months)

Partner of
EuDML logo