Title: | Recollements induced by good (co)silting dg-modules (English) |
Author: | Zhu, Rongmin |
Author: | Wei, Jiaqun |
Language: | English |
Journal: | Czechoslovak Mathematical Journal |
ISSN: | 0011-4642 (print) |
ISSN: | 1572-9141 (online) |
Volume: | 73 |
Issue: | 2 |
Year: | 2023 |
Pages: | 453-473 |
Summary lang: | English |
. | |
Category: | math |
. | |
Summary: | Let $U$ be a dg-$A$-module, $B$ the endomorphism dg-algebra of $U$. We know that if $U$ is a good silting object, then there exist a dg-algebra $C$ and a recollement among the derived categories ${\mathbf D}(C,d)$ of $C$, ${\mathbf D}(B,d)$ of $B$ and ${\mathbf D}(A,d)$ of $A$. We investigate the condition under which the induced dg-algebra $C$ is weak nonpositive. In order to deal with both silting and cosilting dg-modules consistently, the notion of weak silting dg-modules is introduced. Thus, similar results for good cosilting dg-modules are obtained. Finally, some applications are given related to good 2-term silting complexes, good tilting complexes and modules.\looseness -1 (English) |
Keyword: | silting object |
Keyword: | dg-algebra |
Keyword: | cosilting dg-module |
Keyword: | recollement |
MSC: | 16D90 |
MSC: | 16E45 |
MSC: | 18G80 |
idZBL: | Zbl 07729517 |
idMR: | MR4586904 |
DOI: | 10.21136/CMJ.2023.0372-21 |
. | |
Date available: | 2023-05-04T17:45:37Z |
Last updated: | 2023-09-13 |
Stable URL: | http://hdl.handle.net/10338.dmlcz/151667 |
. | |
Reference: | [1] Hügel, L. Angeleri: Silting objects.Bull. Lond. Math. Soc. 51 (2019), 658-690. Zbl 07118830, MR 3990384, 10.1112/blms.12264 |
Reference: | [2] Hügel, L. Angeleri, Herbera, D.: Mittag-Leffler conditions on modules.Indiana Univ. Math. J. 57 (2008), 2459-2517. Zbl 1206.16002, MR 2463975, 10.1512/iumj.2008.57.3325 |
Reference: | [3] Hügel, L. Angeleri, Marks, F., Vitória, J.: Silting modules.Int. Math. Res. Not. 2016 (2016), 1251-1284. Zbl 1367.16005, MR 3493448, 10.1093/imrn/rnv191 |
Reference: | [4] Bazzoni, S.: Equivalences induced by infinitely generated tilting modules.Proc. Am. Math. Soc. 138 (2010), 533-544. Zbl 1233.16008, MR 2557170, 10.1090/S0002-9939-09-10120-X |
Reference: | [5] Bazzoni, S., Mantese, F., Tonolo, A.: Derived equivalence induced by infinitely generated $n$-tilting modules.Proc. Am. Math. Soc. 139 (2011), 4225-4234. Zbl 1232.16004, MR 2823068, 10.1090/S0002-9939-2011-10900-6 |
Reference: | [6] Bazzoni, S., Pavarin, A.: Recollements from partial tilting complexes.J. Algebra 388 (2013), 338-363. Zbl 1303.16013, MR 3061693, 10.1016/j.jalgebra.2013.03.037 |
Reference: | [7] Bazzoni, S., Šťovíček, J.: Smashing localizations of rings of weak global dimension at most one.Adv. Math. 305 (2017), 351-401. Zbl 1386.13043, MR 3570139, 10.1016/j.aim.2016.09.028 |
Reference: | [8] Becker, H.: Models for singularity categories.Adv. Math. 254 (2014), 187-232. Zbl 1348.16009, MR 3161097, 10.1016/j.aim.2013.11.016 |
Reference: | [9] Beilinson, A. A., Bernstein, J., Deligne, P.: Faisceaux pervers.Analysis and Topology on Singular Spaces. I Astérisque 100. Société Mathématique de France, Paris (1982), 5-171 French. Zbl 0536.14011, MR 0751966 |
Reference: | [10] Beligiannis, A., Reiten, I.: Homological and Homotopical Aspects of Torsion Theories.Memoirs of the American Mathematical Society 883. AMS, Providence (2007). Zbl 1124.18005, MR 2327478, 10.1090/memo/0883 |
Reference: | [11] Breaz, S., Modoi, G. C.: Derived equivalences induced by good silting complexes.Available at https://arxiv.org/abs/1707.07353 (2017), 14 pages. |
Reference: | [12] Breaz, S., Modoi, G. C.: Equivalences induced by infinitely generated silting modules.Algebr. Represent. Theory 23 (2020), 2113-2129. Zbl 1471.16011, MR 4165012, 10.1007/s10468-019-09930-3 |
Reference: | [13] Chen, H., Xi, C.: Good tilting modules and recollements of derived module categories.Proc. Lond. Math. Soc. (3) 104 (2012), 959-996. Zbl 1255.18013, MR 2928333, 10.1112/plms/pdr056 |
Reference: | [14] Chen, H., Xi, C.: Good tilting modules and recollements of derived module categories. II.J. Math. Soc. Japan 71 (2019), 515-554. Zbl 1433.18007, MR 3943449, 10.2969/jmsj/78477847 |
Reference: | [15] Hovey, M., Palmieri, J. H., Strickland, N. P.: Axiomatic Stable Homotopy Theory.Memoirs or the American Mathematical Society 610. AMS, Providence (1997). Zbl 0881.55001, MR 1388895, 10.1090/memo/0610 |
Reference: | [16] Keller, B.: Deriving DG categories.Ann. Sci. Éc. Norm. Supér. (4) 27 (1994), 63-102. Zbl 0799.18007, MR 1258406, 10.24033/asens.1689 |
Reference: | [17] Keller, B.: Derived categories and tilting.Handbook of Tilting Theory London Mathematical Society Lecture Note Series 332. Cambridge University Press, London (2007), 49-104. MR 2384608, 10.1017/CBO9780511735134.005 |
Reference: | [18] Marks, F., Vitória, J.: Silting and cosilting classes in derived categories.J. Algebra 501 (2018), 526-544. Zbl 1441.16011, MR 3768148, 10.1016/j.jalgebra.2017.12.031 |
Reference: | [19] Nicolás, P.: On Torsion Torsionfree Triples: Ph.D. Thesis.Available at https://arxiv.org/abs/0801.0507 (2008), 184 pages. |
Reference: | [20] Nicolás, P., Saorín, M.: Parametrizing recollement data for triangulated categories.J. Algebra 322 (2009), 1220-1250. Zbl 1187.18008, MR 2537682, 10.1016/j.jalgebra.2009.04.035 |
Reference: | [21] Nicolás, P., Saorín, M.: Generalized tilting theory.Appl. Categ. Struct. 26 (2018), 309-368. Zbl 1396.18009, MR 3770911, 10.1007/s10485-017-9495-x |
Reference: | [22] Nicolás, P., Saorín, M., Zvonareva, A.: Silting theory in triangulated categories with coproducts.J. Pure Appl. Algebra 223 (2019), 2273-2319. Zbl 1436.18013, MR 3906550, 10.1016/j.jpaa.2018.07.016 |
Reference: | [23] Pauksztello, D.: Homological epimorphisms of differential graded algebras.Commun. Algebra 37 (2009), 2337-2350. Zbl 1189.18005, MR 2536923, 10.1080/00927870802623344 |
Reference: | [24] Schwede, S., Shipley, B. E.: Algebras and modules in monoidal model categories.Proc. Lond. Math. Soc., III. Ser. 80 (2000), 491-511. Zbl 1026.18004, MR 1734325, 10.1112/S002461150001220X |
Reference: | [25] Authors, The Stacks Project: Stacks Project, an open source textbook and reference work on algebraic geometry.Available at https://stacks.math.columbia.edu/tag/04jd. |
Reference: | [26] Authors, The Stacks Project: Stacks Project, an open source textbook and reference work on algebraic geometry.Available at https://stacks.math.columbia.edu/tag/09ks. |
Reference: | [27] Trlifaj, J., Pospíšil, D.: Tilting and cotilting classes over Gorenstein rings.Rings, Modules and Representations Contemporary Mathematics 480. AMS, Providence (2009), 319-334. Zbl 1180.13034, MR 2508160, 10.1090/conm/480 |
Reference: | [28] Wei, J.: Semi-tilting complexes.Isr. J. Math. 194 (2013), 871-893. Zbl 1286.16011, MR 3047094, 10.1007/s11856-012-0093-1 |
Reference: | [29] Yang, D.: Recollements from generalized tilting.Proc. Am. Math. Soc. 140 (2012), 83-91. Zbl 1244.18013, MR 2833519, 10.1090/S0002-9939-2011-10898-0 |
Reference: | [30] Yekutieli, A.: Derived Categories.Cambridge Studies in Advanced Mathematics 183. Cambridge University Press, Cambridge (2020). Zbl 1444.18001, MR 3971537, 10.1017/9781108292825 |
. |
Fulltext not available (moving wall 24 months)