Previous |  Up |  Next

Article

Title: Recollements induced by good (co)silting dg-modules (English)
Author: Zhu, Rongmin
Author: Wei, Jiaqun
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 73
Issue: 2
Year: 2023
Pages: 453-473
Summary lang: English
.
Category: math
.
Summary: Let $U$ be a dg-$A$-module, $B$ the endomorphism dg-algebra of $U$. We know that if $U$ is a good silting object, then there exist a dg-algebra $C$ and a recollement among the derived categories ${\mathbf D}(C,d)$ of $C$, ${\mathbf D}(B,d)$ of $B$ and ${\mathbf D}(A,d)$ of $A$. We investigate the condition under which the induced dg-algebra $C$ is weak nonpositive. In order to deal with both silting and cosilting dg-modules consistently, the notion of weak silting dg-modules is introduced. Thus, similar results for good cosilting dg-modules are obtained. Finally, some applications are given related to good 2-term silting complexes, good tilting complexes and modules.\looseness -1 (English)
Keyword: silting object
Keyword: dg-algebra
Keyword: cosilting dg-module
Keyword: recollement
MSC: 16D90
MSC: 16E45
MSC: 18G80
idZBL: Zbl 07729517
idMR: MR4586904
DOI: 10.21136/CMJ.2023.0372-21
.
Date available: 2023-05-04T17:45:37Z
Last updated: 2023-09-13
Stable URL: http://hdl.handle.net/10338.dmlcz/151667
.
Reference: [1] Hügel, L. Angeleri: Silting objects.Bull. Lond. Math. Soc. 51 (2019), 658-690. Zbl 07118830, MR 3990384, 10.1112/blms.12264
Reference: [2] Hügel, L. Angeleri, Herbera, D.: Mittag-Leffler conditions on modules.Indiana Univ. Math. J. 57 (2008), 2459-2517. Zbl 1206.16002, MR 2463975, 10.1512/iumj.2008.57.3325
Reference: [3] Hügel, L. Angeleri, Marks, F., Vitória, J.: Silting modules.Int. Math. Res. Not. 2016 (2016), 1251-1284. Zbl 1367.16005, MR 3493448, 10.1093/imrn/rnv191
Reference: [4] Bazzoni, S.: Equivalences induced by infinitely generated tilting modules.Proc. Am. Math. Soc. 138 (2010), 533-544. Zbl 1233.16008, MR 2557170, 10.1090/S0002-9939-09-10120-X
Reference: [5] Bazzoni, S., Mantese, F., Tonolo, A.: Derived equivalence induced by infinitely generated $n$-tilting modules.Proc. Am. Math. Soc. 139 (2011), 4225-4234. Zbl 1232.16004, MR 2823068, 10.1090/S0002-9939-2011-10900-6
Reference: [6] Bazzoni, S., Pavarin, A.: Recollements from partial tilting complexes.J. Algebra 388 (2013), 338-363. Zbl 1303.16013, MR 3061693, 10.1016/j.jalgebra.2013.03.037
Reference: [7] Bazzoni, S., Šťovíček, J.: Smashing localizations of rings of weak global dimension at most one.Adv. Math. 305 (2017), 351-401. Zbl 1386.13043, MR 3570139, 10.1016/j.aim.2016.09.028
Reference: [8] Becker, H.: Models for singularity categories.Adv. Math. 254 (2014), 187-232. Zbl 1348.16009, MR 3161097, 10.1016/j.aim.2013.11.016
Reference: [9] Beilinson, A. A., Bernstein, J., Deligne, P.: Faisceaux pervers.Analysis and Topology on Singular Spaces. I Astérisque 100. Société Mathématique de France, Paris (1982), 5-171 French. Zbl 0536.14011, MR 0751966
Reference: [10] Beligiannis, A., Reiten, I.: Homological and Homotopical Aspects of Torsion Theories.Memoirs of the American Mathematical Society 883. AMS, Providence (2007). Zbl 1124.18005, MR 2327478, 10.1090/memo/0883
Reference: [11] Breaz, S., Modoi, G. C.: Derived equivalences induced by good silting complexes.Available at https://arxiv.org/abs/1707.07353 (2017), 14 pages.
Reference: [12] Breaz, S., Modoi, G. C.: Equivalences induced by infinitely generated silting modules.Algebr. Represent. Theory 23 (2020), 2113-2129. Zbl 1471.16011, MR 4165012, 10.1007/s10468-019-09930-3
Reference: [13] Chen, H., Xi, C.: Good tilting modules and recollements of derived module categories.Proc. Lond. Math. Soc. (3) 104 (2012), 959-996. Zbl 1255.18013, MR 2928333, 10.1112/plms/pdr056
Reference: [14] Chen, H., Xi, C.: Good tilting modules and recollements of derived module categories. II.J. Math. Soc. Japan 71 (2019), 515-554. Zbl 1433.18007, MR 3943449, 10.2969/jmsj/78477847
Reference: [15] Hovey, M., Palmieri, J. H., Strickland, N. P.: Axiomatic Stable Homotopy Theory.Memoirs or the American Mathematical Society 610. AMS, Providence (1997). Zbl 0881.55001, MR 1388895, 10.1090/memo/0610
Reference: [16] Keller, B.: Deriving DG categories.Ann. Sci. Éc. Norm. Supér. (4) 27 (1994), 63-102. Zbl 0799.18007, MR 1258406, 10.24033/asens.1689
Reference: [17] Keller, B.: Derived categories and tilting.Handbook of Tilting Theory London Mathematical Society Lecture Note Series 332. Cambridge University Press, London (2007), 49-104. MR 2384608, 10.1017/CBO9780511735134.005
Reference: [18] Marks, F., Vitória, J.: Silting and cosilting classes in derived categories.J. Algebra 501 (2018), 526-544. Zbl 1441.16011, MR 3768148, 10.1016/j.jalgebra.2017.12.031
Reference: [19] Nicolás, P.: On Torsion Torsionfree Triples: Ph.D. Thesis.Available at https://arxiv.org/abs/0801.0507 (2008), 184 pages.
Reference: [20] Nicolás, P., Saorín, M.: Parametrizing recollement data for triangulated categories.J. Algebra 322 (2009), 1220-1250. Zbl 1187.18008, MR 2537682, 10.1016/j.jalgebra.2009.04.035
Reference: [21] Nicolás, P., Saorín, M.: Generalized tilting theory.Appl. Categ. Struct. 26 (2018), 309-368. Zbl 1396.18009, MR 3770911, 10.1007/s10485-017-9495-x
Reference: [22] Nicolás, P., Saorín, M., Zvonareva, A.: Silting theory in triangulated categories with coproducts.J. Pure Appl. Algebra 223 (2019), 2273-2319. Zbl 1436.18013, MR 3906550, 10.1016/j.jpaa.2018.07.016
Reference: [23] Pauksztello, D.: Homological epimorphisms of differential graded algebras.Commun. Algebra 37 (2009), 2337-2350. Zbl 1189.18005, MR 2536923, 10.1080/00927870802623344
Reference: [24] Schwede, S., Shipley, B. E.: Algebras and modules in monoidal model categories.Proc. Lond. Math. Soc., III. Ser. 80 (2000), 491-511. Zbl 1026.18004, MR 1734325, 10.1112/S002461150001220X
Reference: [25] Authors, The Stacks Project: Stacks Project, an open source textbook and reference work on algebraic geometry.Available at https://stacks.math.columbia.edu/tag/04jd.
Reference: [26] Authors, The Stacks Project: Stacks Project, an open source textbook and reference work on algebraic geometry.Available at https://stacks.math.columbia.edu/tag/09ks.
Reference: [27] Trlifaj, J., Pospíšil, D.: Tilting and cotilting classes over Gorenstein rings.Rings, Modules and Representations Contemporary Mathematics 480. AMS, Providence (2009), 319-334. Zbl 1180.13034, MR 2508160, 10.1090/conm/480
Reference: [28] Wei, J.: Semi-tilting complexes.Isr. J. Math. 194 (2013), 871-893. Zbl 1286.16011, MR 3047094, 10.1007/s11856-012-0093-1
Reference: [29] Yang, D.: Recollements from generalized tilting.Proc. Am. Math. Soc. 140 (2012), 83-91. Zbl 1244.18013, MR 2833519, 10.1090/S0002-9939-2011-10898-0
Reference: [30] Yekutieli, A.: Derived Categories.Cambridge Studies in Advanced Mathematics 183. Cambridge University Press, Cambridge (2020). Zbl 1444.18001, MR 3971537, 10.1017/9781108292825
.

Fulltext not available (moving wall 24 months)

Partner of
EuDML logo