Previous |  Up |  Next

Article

Title: Some applications of subordination theorems associated with fractional $q$-calculus operator (English)
Author: Kota, Wafaa Y.
Author: El-Ashwah, Rabha Mohamed
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 148
Issue: 2
Year: 2023
Pages: 131-148
Summary lang: English
.
Category: math
.
Summary: Using the operator $\frak {D}_{q,\varrho }^{m}(\lambda ,l)$, we introduce the subclasses $\frak {Y}^{*m}_{q,\varrho }(l,\lambda ,\gamma )$ and $\frak {K}^{*m}_{q,\varrho }(l,\lambda ,\gamma )$ of normalized analytic functions. Among the results investigated for each of these function classes, we derive some subordination results involving the Hadamard product of the associated functions. The interesting consequences of some of these subordination results are also discussed. Also, we derive integral means results for these classes. (English)
Keyword: analytic function
Keyword: subordination principle
Keyword: subordinating factor sequence
Keyword: Hadamard product
Keyword: $q$-difference operator
Keyword: fractional $q$-calculus operator
MSC: 30C45
MSC: 30C50
idZBL: Zbl 07729569
idMR: MR4585573
DOI: 10.21136/MB.2022.0047-21
.
Date available: 2023-05-04T17:54:47Z
Last updated: 2023-09-13
Stable URL: http://hdl.handle.net/10338.dmlcz/151680
.
Reference: [1] Abelman, S., Selvakumaran, K. A., Rashidi, M. M., Purohit, S. D.: Subordination conditions for a class of non-Bazilević type defined by using fractional $q$-calculus operators.Facta Univ., Ser. Math. Inf. 32 (2017), 255-267. Zbl 07342522, MR 3651242, 10.22190/FUMI1702255A
Reference: [2] Al-Oboudi, F. M.: On univalent functions defined by a generalized Sălăgean operator.Int. J. Math. Math. Sci. 2004 (2004), 1429-1436. Zbl 1072.30009, MR 2085011, 10.1155/S0161171204108090
Reference: [3] Al-Oboudi, F. M., Al-Amoudi, K. A.: On classes of analytic functions related to conic domains.J. Math. Anal. Appl. 339 (2008), 655-667. Zbl 1132.30010, MR 2370683, 10.1016/j.jmaa.2007.05.087
Reference: [4] Aouf, M. K., Mostafa, A. O., Elmorsy, R. E.: Certain subclasses of analytic functions with varying arguments associated with $q$-difference operator.Afr. Mat. 32 (2021), 621-630. Zbl 07397374, MR 4259359, 10.1007/s13370-020-00849-3
Reference: [5] Attiya, A. A.: On some applications of a subordination theorem.J. Math. Anal. Appl. 311 (2005), 489-494. Zbl 1080.30010, MR 2168412, 10.1016/j.jmaa.2005.02.056
Reference: [6] Cătaş, A.: On certain classes of $p$-valent functions defined by multiplier transformations.Proceedings of the International Symposium on Geometric Function Theory and Applications S. Owa, Y. Polatoglu Istanbul Kültür University Publications, Istanbul (2007), 241-250.
Reference: [7] Cho, N. E., Srivastava, H. M.: Argument estimates of certain analytic functions defined by a class of multiplier transformations.Math. Comput. Modelling 37 (2003), 39-49. Zbl 1050.30007, MR 1959457, 10.1016/S0895-7177(03)80004-3
Reference: [8] Duren, P. L.: Univalent Functions.Grundlehren der Mathematischen Wissenschaften 259. Springer, New York (1983). Zbl 0514.30001, MR 0708494
Reference: [9] El-Ashwah, R. M., Aouf, M. K., Shamandy, A., Ali, E. E.: Subordination results for some subclasses of analytic functions.Math. Bohem. 136 (2011), 311-331. Zbl 1249.30030, MR 2893979, 10.21136/MB.2011.141652
Reference: [10] Gasper, G., Rahman, M.: Basic Hypergeometric Series.Encyclopedia of Mathematics and Its Applications 35. Cambridge University Press, Cambridge (1990). Zbl 0695.33001, MR 1052153
Reference: [11] Govindaraj, M., Sivasubramanian, S.: On a class of analytic functions related to conic domains involving $q$-calculus.Anal. Math. 43 (2017), 475-487. Zbl 1399.30047, MR 3691744, 10.1007/s10476-017-0206-5
Reference: [12] Ismail, M. E. H., Merkes, E., Styer, D.: A generalization of starlike functions.Complex Variables, Theory Appl. 14 (1990), 77-84. Zbl 0708.30014, MR 1048708, 10.1080/17476939008814407
Reference: [13] Jackson, F. H.: On $q$-definite integrals.Quart. J. 41 (1910), 193-203 \99999JFM99999 41.0317.04.
Reference: [14] Jackson, F. H.: $q$-difference equations.Am. J. Math. 32 (1910), 305-314 \99999JFM99999 41.0502.01. MR 1506108, 10.2307/2370183
Reference: [15] Littlewood, J. E.: On inequalities in the theory of functions.Proc. Lond. Math. Soc. (2) 23 (1925), 481-519 \99999JFM99999 51.0247.03. MR 1575208, 10.1112/plms/s2-23.1.481
Reference: [16] Nishiwaki, J., Owa, S.: Coefficient inequalities for certain analytic functions.Int. J. Math. Math. Sci. 29 (2002), 285-290. Zbl 1003.30006, MR 1896244, 10.1155/S0161171202006890
Reference: [17] Owa, S., Nishiwaki, J.: Coefficient estimates for certain classes of analytic functions.JIPAM, J. Inequal. Pure Appl. Math. 3 (2002), Article ID 72, 5 pages. Zbl 1033.30013, MR 1966507
Reference: [18] Owa, S., Srivastava, H. M.: Univalent and starlike generalized hypergeometric functions.Can. J. Math. 39 (1987), 1057-1077. Zbl 0611.33007, MR 0918587, 10.4153/CJM-1987-054-3
Reference: [19] Purohit, S. D., Raina, R. K.: Certain subclasses of analytic functions associated with fractional $q$-calculus operators.Math. Scand. 109 (2011), 55-70. Zbl 1229.33027, MR 2831147, 10.7146/math.scand.a-15177
Reference: [20] Sălăgean, G. S.: Subclasses of univalent functions.Complex Analysis - Fifth Romanian-Finnish Seminar. Part 1 Lecture Notes in Mathematics 1013. Springer, Berlin (1983), 362-372. Zbl 0531.30009, MR 0738107, 10.1007/BFb0066543
Reference: [21] Silverman, H.: Univalent functions with negative coefficients.Proc. Am. Math. Soc. 51 (1975), 109-116. Zbl 0311.30007, MR 0369678, 10.1090/S0002-9939-1975-0369678-0
Reference: [22] Silverman, H.: A survey with open problems on univalent functions whose coefficients are negative.Rocky Mt. J. Math. 21 (1991), 1099-1125. Zbl 0766.30011, MR 1138154, 10.1216/rmjm/1181072932
Reference: [23] Silverman, H.: Integral means for univalent functions with negative coefficients.Houston J. Math. 23 (1997), 169-174. Zbl 0889.30010, MR 1688819
Reference: [24] Srivastava, H. M.: Operators of basic (or $q$-) calculus and fractional $q$-calculus and their applications in geometric function theory of complex analysis.Iran. J. Sci. Technol., Trans. A, Sci. 44 (2020), 327-344. MR 4064730, 10.1007/s40995-019-00815-0
Reference: [25] Srivastava, H. M., Attiya, A. A.: Some subordination results associated with certain subclasses of analytic functions.JIPAM, J. Inequal. Pure Appl. Math. 5 (2004), Article ID 82, 6 pages. Zbl 1059.30021, MR 2112435
Reference: [26] Uralegaddi, B. A., Ganigi, M. D., Sarangi, S. M.: Univalent functions with positive coefficients.Tamkang J. Math. 25 (1994), 225-230. Zbl 0837.30012, MR 1304483, 10.5556/j.tkjm.25.1994.4448
Reference: [27] Wilf, H. S.: Subordinating factor sequences for convex maps of the unit circle.Proc. Am. Math. Soc. 12 (1961), 689-693. Zbl 0100.07201, MR 0125214, 10.1090/S0002-9939-1961-0125214-5
.

Files

Files Size Format View
MathBohem_148-2023-2_1.pdf 262.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo