Previous |  Up |  Next

Article

Title: Bicyclic commutator quotients with one non-elementary component (English)
Author: Mayer, Daniel C.
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 148
Issue: 2
Year: 2023
Pages: 149-180
Summary lang: English
.
Category: math
.
Summary: For any number field $K$ with non-elementary $3$-class group ${\rm Cl}_3(K)\simeq C_{3^e}\times C_3$, $e\ge 2$, the punctured capitulation type $\varkappa (K)$ of $K$ in its unramified cyclic cubic extensions $L_i$, $1\le i\le 4$, is an orbit under the action of $S_3\times S_3$. By means of Artin's reciprocity law, the arithmetical invariant $\varkappa (K)$ is translated to the punctured transfer kernel type $\varkappa (G_2)$ of the automorphism group $G_2={\rm Gal}({\rm F}_3^2(K)/K)$ of the second Hilbert $3$-class field of $K$. A classification of finite $3$-groups $G$ with low order and bicyclic commutator quotient $G/G^\prime \simeq C_{3^e}\times C_3$, $2\le e\le 6$, according to the algebraic invariant $\varkappa (G)$, admits conclusions concerning the length of the Hilbert $3$-class field tower ${\rm F}_3^\infty (K)$ of imaginary quadratic number fields $K$. (English)
Keyword: Hilbert $3$-class field tower
Keyword: maximal unramified pro-$3$ extension
Keyword: unramified cyclic cubic extensions
Keyword: Galois action
Keyword: imaginary quadratic fields
Keyword: bicyclic $3$-class group
Keyword: punctured capitulation types
Keyword: statistics
Keyword: pro-$3$ groups
Keyword: finite $3$-groups
Keyword: generator rank
Keyword: relation rank
Keyword: Schur $\sigma $-groups
Keyword: low index normal subgroups
Keyword: kernels of Artin transfers
Keyword: abelian quotient invariants
Keyword: $p$-group generation algorithm
Keyword: descendant trees
Keyword: antitony principle
MSC: 11R11
MSC: 11R20
MSC: 11R29
MSC: 11R32
MSC: 11R37
MSC: 11Y40
MSC: 20D15
MSC: 20E18
MSC: 20E22
MSC: 20F05
MSC: 20F12
MSC: 20F14
idZBL: Zbl 07729570
idMR: MR4585574
DOI: 10.21136/MB.2022.0127-21
.
Date available: 2023-05-04T17:56:07Z
Last updated: 2023-09-13
Stable URL: http://hdl.handle.net/10338.dmlcz/151682
.
Reference: [1] Arrigoni, M.: On Schur $\sigma$-groups.Math. Nachr. 192 (1998), 71-89. Zbl 0908.20028, MR 1626391, 10.1002/mana.19981920105
Reference: [2] Artin, E.: Beweis des allgemeinen Reziprozitätsgesetzes.Abh. Math. Semin. Univ. Hamb. 5 (1927), 353-363 German \99999JFM99999 53.0144.04. MR 3069486, 10.1007/BF02952531
Reference: [3] Artin, E.: Idealklassen in Oberkörpern und allgemeines Reziprozitätsgesetz.Abh. Math. Semin. Univ. Hamb. 7 (1929), 46-51 German \99999JFM99999 55.0699.01. MR 3069515, 10.1007/BF02941159
Reference: [4] Ascione, J. A., Havas, G., Leedham-Green, C. R.: A computer aided classification of certain groups of prime power order.Bull. Aust. Math. Soc. 17 (1977), 257-274. Zbl 0359.20018, MR 0470038, 10.1017/S0004972700010467
Reference: [5] Bembom, T.: The Capitulation Problem in Class Field Theory: Dissertation.University of Göttingen, Göttingen (2012). Zbl 1298.11104
Reference: [6] Besche, H. U., Eick, B., O'Brien, E. A.: The SmallGroups Library.Available at https://www.gap-system.org/Packages/smallgrp.html.
Reference: [7] Bosma, W., Cannon, J., Playoust, C.: The Magma algebra system. I. The user language.J. Symb. Comput. 24 (1997), 235-265. Zbl 0898.68039, MR 1484478, 10.1006/jsco.1996.0125
Reference: [8] Bosma, W., Steel, A., Matthews, G., Fisher, D., Cannon, J., Contini, S., (eds.), B. Smith: Handbook of Magma Functions.Available at http://magma.maths.usyd.edu.au/magma/handbook/.
Reference: [9] Boston, N., Bush, M. R., Hajir, F.: Heuristics for $p$-class towers of imaginary quadratic fields.Math. Ann. 368 (2017), 633-669. Zbl 1420.11137, MR 3651585, 10.1007/s00208-016-1449-3
Reference: [10] Bush, M. R., Mayer, D. C.: 3-class field towers of exact length 3.J. Number Theory 147 (2015), 766-777. Zbl 1395.11125, MR 3276352, 10.1016/j.jnt.2014.08.010
Reference: [11] Eick, B., Leedham-Green, C. R., Newman, M. F., O'Brien, E. A.: On the classification of groups of prime-power order by coclass: The 3-groups of coclass 2.Int. J. Algebra Comput. 23 (2013), 1243-1288. Zbl 1298.20020, MR 3096320, 10.1142/S0218196713500252
Reference: [12] Fieker, C.: Computing class fields via the Artin map.Math. Comput. 70 (2001), 1293-1303. Zbl 0982.11074, MR 1826583, 10.1090/S0025-5718-00-01255-2
Reference: [13] Gamble, G., Nickel, W., O'Brien, E. A., Newman, M. F.: ANU $p$-Quotient: $p$-Quotient and $p$-Group Generation Algorithms.Available at https://www.gap-system.org/Packages/anupq.html.
Reference: [14] Heider, F.-P., Schmithals, B.: Zur Kapitulation der Idealklassen in unverzweigten primzyklischen Erweiterungen.J. Reine Angew. Math. 336 (1982), 1-25 German. Zbl 0505.12016, MR 0671319, 10.1515/crll.1982.336.1
Reference: [15] Holt, D. F., Eick, B., O'Brien, E. A.: Handbook of Computational Group Theory.Discrete Mathematics and Its Applications. Chapman and Hall/CRC Press, Boca Raton (2005). Zbl 1091.20001, MR 2129747, 10.1201/9781420035216
Reference: [16] Koch, H., Venkov, B. B.: Über den $p$-Klassenkörperturm eines imaginär-quadratischen Zahlkörpers.Astérisque 24-25 (1975), 57-67 German. Zbl 0335.12021, MR 0392928
Reference: [17] Group, MAGMA Developer: MAGMA: Computational Algebra System, Version 2.26-10.Available at http://magma.maths.usyd.edu.au/magma/ (2021).
Reference: [18] Mayer, D. C.: Principalization in complex $S_3$-fields.Numerical Mathematics and Computing Congressus Numerantium 80. Utilitas Mathematica Publishing, Winnipeg (1991), 73-87. Zbl 0733.11037, MR 1124863
Reference: [19] Mayer, D. C.: Transfers of metabelian $p$-groups.Monatsh. Math. 166 (2012), 467-495. Zbl 1261.11071, MR 2925150, 10.1007/s00605-010-0277-x
Reference: [20] Mayer, D. C.: New number fields with known $p$-class tower.Tatra Mt. Math. Publ. 64 (2015), 21-57. Zbl 1392.11086, MR 3458782, 10.1515/tmmp-2015-0040
Reference: [21] Mayer, D. C.: Periodic bifurcations in descendant trees of finite $p$-groups.Adv. Pure Math. 5 (2015), 162-195. 10.4236/apm.2015.54020
Reference: [22] Mayer, D. C.: Artin transfer patterns on descendant trees of finite $p$-groups.Adv. Pure Math. 6 (2016), 66-104. 10.4236/apm.2016.62008
Reference: [23] Mayer, D. C.: $p$-capitulation over number fields with $p$-class rank two.J. Appl. Math. Phys. 4 (2016), 1280-1293. 10.4236/jamp.2016.47135
Reference: [24] Mayer, D. C.: Recent progress in determining $p$-class field towers.Gulf J. Math. 4 (2016), 74-102. Zbl 1401.11147, MR 3596388, 10.56947/gjom.v4i4.267
Reference: [25] Mayer, D. C.: Modeling rooted in-trees by finite $p$-groups.Graph Theory: Advanced Algorithms and Applications InTechOpen, London (2018), 85-113. 10.5772/intechopen.68703
Reference: [26] Mayer, D. C.: Pattern recognition via Artin transfers: Applied to $p$-class field towers.3rd International Conference on Mathematics and its Applications (ICMA) 2020 Université Hassan II, Casablanca (2020), Available at http://www.algebra.at/DCM@ICMA2020Casablanca.pdf\kern-1pt.
Reference: [27] Mayer, D. C.: BCF-groups with elevated rank distribution.Available at https://arxiv.org/abs/2110.03558 (2021), 22 pages.
Reference: [28] Mayer, D. C.: First excited state with moderate rank distribution.Available at https://arxiv.org/abs/2110.06511 (2021), 7 pages.
Reference: [29] Mayer, D. C.: New perspectives of the power-commutator-structure: Coclass trees of CF-groups and related BCF-groups.Available at https://arxiv.org/abs/2112.15215 (2021), 25 pages.
Reference: [30] Mayer, D. C.: Periodic Schur $\sigma$-groups of non-elementary bicyclic type.Available at https://arxiv.org/abs/2110.13886 (2021), 18 pages.
Reference: [31] Nebelung, B.: Klassifikation metabelscher 3-Gruppen mit Faktorkommutatorgruppe vom Typ (3,3) und Anwendung auf das Kapitulationsproblem: Inauguraldissertation.Universität zu Köln, Köln (1989), German.
Reference: [32] Newman, M. F.: Determination of groups of prime-power order.Group Theory, Canberra, 1975 Lecture Notes in Mathematics 573. Springer, Berlin (1977), 73-84. Zbl 0519.20018, MR 0453862, 10.1007/BFb0087814
Reference: [33] O'Brien, E. A.: The $p$-group generation algorithm.J. Symb. Comput. 9 (1990), 677-698. Zbl 0736.20001, MR 1075431, 10.1016/S0747-7171(08)80082-X
Reference: [34] Scholz, A., Taussky, O.: Die Hauptideale der kubischen Klassenkörper imaginär-quadratischer Zahlkörper: Ihre rechnerische Bestimmung und ihr Einflußauf den Klassenkörperturm.J. Reine Angew. Math. 171 (1934), 19-41 German \99999JFM99999 60.0126.02. MR 1581417, 10.1515/crll.1934.171.19
Reference: [35] Shafarevich, I. R.: Extensions with given points of ramification.Am. Math. Soc., Transl., II. Ser. 59 (1966), 128-149 translation from Publ. Math., Inst. Hautes Étud. Sci. 18 1963 71-95. Zbl 0199.09707, MR 0176979, 10.1090/trans2/059
Reference: [36] Taussky, O.: A remark concerning Hilbert's theorem 94.J. Reine Angew. Math. 239-240 (1969), 435-438. Zbl 0186.09002, MR 0279070, 10.1515/crll.1969.239-240.435
.

Files

Files Size Format View
MathBohem_148-2023-2_2.pdf 484.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo