Previous |  Up |  Next

Article

Title: On Goldie absolute direct summands in modular lattices (English)
Author: Shroff, Rupal
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 148
Issue: 2
Year: 2023
Pages: 243-253
Summary lang: English
.
Category: math
.
Summary: Absolute direct summand in lattices is defined and some of its properties in modular lattices are studied. It is shown that in a certain class of modular lattices, the direct sum of two elements has absolute direct summand if and only if the elements are relatively injective. As a generalization of absolute direct summand (ADS for short), the concept of Goldie absolute direct summand in lattices is introduced and studied. It is shown that Goldie ADS property is inherited by direct summands. A necessary and sufficient condition is given for an element of modular lattice to have Goldie ADS. (English)
Keyword: injective element
Keyword: ejective element
Keyword: Goldie extending element
Keyword: absolute direct summand
Keyword: Goldie absolute direct summand
MSC: 06B05
MSC: 06B99
MSC: 06C05
idZBL: Zbl 07729576
idMR: MR4585580
DOI: 10.21136/MB.2022.0110-21
.
Date available: 2023-05-04T17:59:58Z
Last updated: 2023-09-13
Stable URL: http://hdl.handle.net/10338.dmlcz/151688
.
Reference: [1] Alahmadi, A., Jain, S. K., Leroy, A.: ADS modules.J. Algebra 352 (2012), 215-222. Zbl 1256.16005, MR 2862183, 10.1016/j.jalgebra.2011.10.035
Reference: [2] Burgess, W. D., Raphael, R.: On modules with the absolute direct summand property.Ring Theory World Scientific, Singapore (1993), 137-148. Zbl 0853.16008, MR 1344227
Reference: [3] Călugăreanu, G.: Lattice Concepts of Module Theory.Kluwer Texts in the Mathematical Sciences 22. Kluwer, Dordrecht (2000). Zbl 0959.06001, MR 1782739, 10.1007/978-94-015-9588-9
Reference: [4] Fuchs, L.: Infnite Abelian Groups. I.Pure and Applied Mathematics 36. Academic Press, New York (1970). Zbl 0209.05503, MR 0255673
Reference: [5] Grätzer, G.: General Lattice Theory.Birkhäuser, Basel (1998). Zbl 0909.06002, MR 1670580
Reference: [6] Nimbhorkar, S. K., Shroff, R. C.: Generalized extending ideals in modular lattices.J. Indian Math. Soc., New Ser. 82 (2015), 127-146. Zbl 1351.06004, MR 3467622
Reference: [7] Nimbhorkar, S. K., Shroff, R. C.: Ojective ideals in modular lattices.Czech. Math. J. 65 (2015), 161-178. Zbl 1338.06004, MR 3336031, 10.1007/s10587-015-0166-5
Reference: [8] Nimbhorkar, S. K., Shroff, R. C.: Goldie extending elements in modular lattices.Math. Bohem. 142 (2017), 163-180. Zbl 1424.06028, MR 3660173, 10.21136/MB.2016.0049-14
Reference: [9] Quynh, T. C., Şahinkaya, S.: Goldie absolute direct summand in rings and modules.Stud. Univ. Babeş-Bolyai, Math. 63 (2018), 437-445. Zbl 1438.16014, MR 3886059, 10.24193/subbmath.2018.4.02
Reference: [10] Mutlu, F. Takil: On Modules With the Absolute Direct Summand Property: Ph.D. Thesis.University of Anatolia, Eskişehir (2003).
Reference: [11] Mutlu, F. Takil: On AdS-modules with the SIP.Bull. Iran. Math. Soc. 41 (2015), 1355-1363. Zbl 1373.16013, MR 3437148
Reference: [12] Tercan, A., Yücel, C. C.: Module Theory, Extending Modules and Generalizations.Frontiers in Mathematics. Birkhäuser, Basel (2016). Zbl 1368.16002, MR 3468915, 10.1007/978-3-0348-0952-8
.

Files

Files Size Format View
MathBohem_148-2023-2_8.pdf 224.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo