Previous |  Up |  Next

Article

Title: Existence of renormalized solutions for some degenerate and non-coercive elliptic equations (English)
Author: Akdim, Youssef
Author: Belayachi, Mohammed
Author: Hjiaj, Hassane
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 148
Issue: 2
Year: 2023
Pages: 255-282
Summary lang: English
.
Category: math
.
Summary: This paper is devoted to the study of some nonlinear degenerated elliptic equations, whose prototype is given by $$ \begin{aligned}t 2&-{\rm div}( b(|u|)|\nabla u|^{p-2}\nabla u) + d(|u|)|\nabla u|^{p} = f - {\rm div}(c(x)|u|^{\alpha }) &\quad &\mbox {in}\ \Omega ,\\ & u = 0 &\quad &\mbox {on}\ \partial \Omega , \end{aligned}t $$ where $\Omega $ is a bounded open set of $\mathbb {R}^N$ ($N\geq 2$) with $1<p<N$ and $f \in L^{1}(\Omega ),$ under some growth conditions on the function $b(\cdot )$ and $d(\cdot ),$ where $c(\cdot )$ is assumed to be in $L^{\frac {N}{(p-1)}}(\Omega ).$ We show the existence of renormalized solutions for this non-coercive elliptic equation, also, some regularity results will be concluded. (English)
Keyword: renormalized solution
Keyword: nonlinear elliptic equation
Keyword: non-coercive problem
MSC: 35J60
MSC: 46E30
MSC: 46E35
idZBL: Zbl 07729577
idMR: MR4585581
DOI: 10.21136/MB.2022.0061-21
.
Date available: 2023-05-04T18:00:48Z
Last updated: 2023-09-13
Stable URL: http://hdl.handle.net/10338.dmlcz/151689
.
Reference: [1] Alvino, A., Boccardo, L., Ferone, V., Orsina, L., Trombetti, G.: Existence results for nonlinear elliptic equations with degenerate coercivity.Ann. Mat. Pura Appl., IV. Ser. 182 (2003), 53-79. Zbl 1105.35040, MR 1970464, 10.1007/s10231-002-0056-y
Reference: [2] Alvino, A., Ferone, V., Trombetti, G.: A priori estimates for a class of nonuniformly elliptic equations.Atti Semin. Mat. Fis. Univ. Modena 46 (1998), 381-391. Zbl 0911.35025, MR 1645729
Reference: [3] Ali, M. Ben Cheikh, Guibé, O.: Nonlinear and non-coercive elliptic problems with integrable data.Adv. Math. Sci. Appl. 16 (2006), 275-297. Zbl 1215.35066, MR 2253236
Reference: [4] Bénilan, P., Boccardo, L., Gallouët, T., Gariepy, R., Pierre, M., Vazquez, J. L.: An $L^1$-theory of existence and uniqueness of solutions of nonlinear elliptic equations.Ann. Sc. Norm. Super. Pisa, Cl. Sci., IV. Ser. 22 (1995), 241-273. Zbl 0866.35037, MR 1354907
Reference: [5] Bensoussan, A., Boccardo, L., Murat, F.: On a nonlinear partial differential equation having natural growth terms and unbounded solution.Ann. Inst. Henri Poincaré, Anal. Non Linéaire 5 (1988), 347-364. Zbl 0696.35042, MR 0963104, 10.1016/S0294-1449(16)30342-0
Reference: [6] Blanchard, D., Guibé, O.: Infinite valued solutions of non-uniformly elliptic problems.Anal. Appl., Singap. 2 (2004), 227-246. Zbl 1129.35370, MR 2070448, 10.1142/S0219530504000369
Reference: [7] Boccardo, L., Dall'Aglio, A., Orsina, L.: Existence and regularity results for some elliptic equations with degenerate coercivity.Atti Semin. Mat. Fis. Univ. Modena 46 (1998), 51-81. Zbl 0911.35049, MR 1645710
Reference: [8] Boccardo, L., Gallouet, T.: Strongly nonlinear elliptic equations having natural growth terms and $L^1$ data.Nonlinear Anal., Theory Methods Appl. 19 (1992), 573-579. Zbl 0795.35031, MR 1183664, 10.1016/0362-546X(92)90022-7
Reference: [9] Croce, G.: The regularizing effects of some lower order terms in an elliptic equation with degenerate coercivity.Rend. Mat. Appl., VII. Ser. 27 (2007), 299-314. Zbl 1147.35043, MR 2398428
Reference: [10] Vecchio, T. Del, Posteraro, M. R.: Existence and regularity results for nonlinear elliptic equations with measure data.Adv. Differ. Equ. 1 (1996), 899-917. Zbl 0856.35044, MR 1392010
Reference: [11] Pietra, F. Della: Existence results for non-uniformly elliptic equations with general growth in the gradient.Differ. Integral Equ. 21 (2008), 821-836. Zbl 1224.35117, MR 2483336
Reference: [12] Droniou, J.: Non-coercive linear elliptic problems.Potential Anal. 17 (2002), 181-203. Zbl 1161.35362, MR 1908676, 10.1023/A:1015709329011
Reference: [13] Droniou, J.: Global and local estimates for nonlinear noncoercive elliptic equations with measure data.Commun. Partial Differ. Equations 28 (2003), 129-153. Zbl 1094.35046, MR 1974452, 10.1081/PDE-120019377
Reference: [14] Guibé, O., Mercaldo, A.: Existence and stability results for renormalized solutions to noncoercive nonlinear elliptic equations with measure data.Potential Anal. 25 (2006), 223-258. Zbl 1198.35072, MR 2255346, 10.1007/s11118-006-9011-7
Reference: [15] Guibé, O., Mercaldo, A.: Existence of renormalized solutions to nonlinear elliptic equations with two lower order terms and measure data.Trans. Am. Math. Soc. 360 (2008), 643-669. Zbl 1156.35042, MR 2346466, 10.1090/S0002-9947-07-04139-6
Reference: [16] Leone, C., Porretta, A.: Entropy solutions for nonlinear elliptic equations in $L^1$.Nonlinear Anal., Theory Methods Appl. 32 (1998), 325-334. Zbl 1155.35352, MR 1610574, 10.1016/S0362-546X(96)00323-9
Reference: [17] Lions, J. L.: Quelques méthodes de résolution des problèmes aux limites non linéaires.Etudes mathematiques. Dunod, Gauthier-Villars, Paris (1969), French. Zbl 0189.40603, MR 0259693
Reference: [18] Maderna, C., Pagani, C. D., Salsa, S.: Quasilinear elliptic equations with quadratic growth in the gradient.J. Differ. Equations 97 (1992), 54-70. Zbl 0785.35039, MR 1161311, 10.1016/0022-0396(92)90083-Y
Reference: [19] Murat, F.: Soluciones renormalizadas de EDP elipticas non lineales.Technical Report R93023, Laboratoire d'Analyse Numérique, Paris (1993), French.
Reference: [20] Porretta, A.: Nonlinear equations with natural growth terms and measure data.Electron. J. Differ. Equ. Conf. 09 (2002), 183-202. Zbl 1109.35341, MR 1976695
Reference: [21] León, S. Segura de: Existence and uniqueness for $L^1$ data of some elliptic equations with natural growth.Adv. Differ. Equ. 8 (2003), 1377-1408. Zbl 1158.35365, MR 2016651
Reference: [22] Trombetti, C.: Non-uniformly elliptic equations with natural growth in the gradient.Potential Anal. 18 (2003), 391-404. Zbl 1040.35010, MR 1953268, 10.1023/A:1021884903872
Reference: [23] Zou, W.: Existence of solutions for a class of porous medium type equations with a lower order terms.J. Inequal. Appl. 2015 (2015), Article ID 294, 23 pages. Zbl 1336.35167, MR 3399257, 10.1186/s13660-015-0799-9
.

Files

Files Size Format View
MathBohem_148-2023-2_9.pdf 334.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo