Previous |  Up |  Next

Article

Title: Generalization of the $S$-Noetherian concept (English)
Author: Dabbabi, Abdelamir
Author: Benhissi, Ali
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 59
Issue: 4
Year: 2023
Pages: 307-314
Summary lang: English
.
Category: math
.
Summary: Let $A$ be a commutative ring and ${\mathcal{S}}$ a multiplicative system of ideals. We say that $A$ is ${\mathcal{S}}$-Noetherian, if for each ideal $Q$ of $A$, there exist $I\in {\mathcal{S}}$ and a finitely generated ideal $F\subseteq Q$ such that $IQ\subseteq F$. In this paper, we study the transfer of this property to the polynomial ring and Nagata’s idealization. (English)
Keyword: ${\mathcal{S}}$-Noetherian
Keyword: Nagata’s idealization
Keyword: multiplicative system of ideals
MSC: 13A15
MSC: 13B25
MSC: 13E05
idZBL: Zbl 07790549
idMR: MR4641948
DOI: 10.5817/AM2023-4-307
.
Date available: 2023-08-15T13:30:42Z
Last updated: 2024-02-13
Stable URL: http://hdl.handle.net/10338.dmlcz/151788
.
Reference: [1] Anderson, D.D., Dumitrescu, T.: S-Noetherian rings.Comm. Algebra 30 (9) (2002), 4407–4416. MR 1936480, 10.1081/AGB-120013328
Reference: [2] Anderson, D.D., Winders, M.: Idealization of a module.J. Commut. Algebra 1 (2009), 3–53. MR 2462381, 10.1216/JCA-2009-1-1-3
Reference: [3] Hamann, E., Houston, E., Johnson, J.: Properties of uppers to zero in $R[X]$.Pacific J. Math. 135 (1988), 65–79. MR 0965685, 10.2140/pjm.1988.135.65
Reference: [4] Hamed, A., Hizem, S.: S-Noetherian rings of the form ${\mathcal{A}}[X]$ and ${\mathcal{A}}[[X]]$.Comm. Algebra 43 (2015), 3848–3856. MR 3360852
Reference: [5] Huckaba, J.A.: Commutative rings with zero divizors.Pure Appl. Math., Marcel Dekker, 1988. MR 0938741
Reference: [6] Lim, J.W., Oh, D.Y.: S-Noetherian properties on amalgamated algebras along an ideal.J. Pure Appl. Algebra 218 (2014), 1075–1080. MR 3153613, 10.1016/j.jpaa.2013.11.003
.

Files

Files Size Format View
ArchMathRetro_059-2023-4_1.pdf 418.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo