Title:
|
Padovan and Perrin numbers as products of two generalized Lucas numbers (English) |
Author:
|
Adédji, Kouèssi Norbert |
Author:
|
Odjoumani, Japhet |
Author:
|
Togbé, Alain |
Language:
|
English |
Journal:
|
Archivum Mathematicum |
ISSN:
|
0044-8753 (print) |
ISSN:
|
1212-5059 (online) |
Volume:
|
59 |
Issue:
|
4 |
Year:
|
2023 |
Pages:
|
315-337 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
Let $P_m$ and $E_m$ be the $m$-th Padovan and Perrin numbers respectively. Let $r, s$ be non-zero integers with $r\ge 1$ and $s\in \lbrace -1, 1\rbrace $, let $\lbrace U_n\rbrace _{n\ge 0}$ be the generalized Lucas sequence given by $U_{n+2}=rU_{n+1} + sU_n$, with $U_0=0$ and $U_1=1.$ In this paper, we give effective bounds for the solutions of the following Diophantine equations \[ P_m=U_nU_k\quad \text{and}\quad E_m=U_nU_k\,, \] where $m$, $ n$ and $k$ are non-negative integers. Then, we explicitly solve the above Diophantine equations for the Fibonacci, Pell and balancing sequences. (English) |
Keyword:
|
generalized Lucas numbers |
Keyword:
|
linear forms in logarithms |
Keyword:
|
reduction method |
MSC:
|
11B39 |
MSC:
|
11J86 |
idZBL:
|
Zbl 07790550 |
idMR:
|
MR4641949 |
DOI:
|
10.5817/AM2023-4-315 |
. |
Date available:
|
2023-08-15T13:31:51Z |
Last updated:
|
2024-02-13 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/151790 |
. |
Reference:
|
[1] Baker, A., Davenport, H.: The equations $3x^2-2 = y^2$ and $8x^2-7 = z^2$.Quart. J. Math. Oxford Ser. (2) 20 (1969), 129–137. MR 0248079 |
Reference:
|
[2] Bugeaud, Y., Mignotte, M., Siksek, S.: Classical and modular approaches to exponential Diophantine equations I. Fibonacci and Lucas powers.Ann. of Math. (2) 163 (2006), 969–1018. MR 2215137 |
Reference:
|
[3] Ddamulira, M.: Padovan numbers that are concatenations of two distinct repdigits.Math. Slovaca 71 (2021), 275–284. MR 4243626, 10.1515/ms-2017-0467 |
Reference:
|
[4] Dujella, A., Pethő, A.: A generalization of a theorem of Baker and Davenport.Quart. J. Math. Oxford Ser. (2) 49 (1998), 291–306. MR 1645552 |
Reference:
|
[5] Guzmán, S., Luca, F.: Linear combinations of factorials and $s$-units in a binary recurrence sequence.Ann. Math. Qué. 38 (2014), 169–188. MR 3283974 |
Reference:
|
[6] Kiss, P.: On common terms of linear recurrences.Acta Math. Acad. Sci. Hungar. 40 (1–2) (1982), 119–123. MR 0685998, 10.1007/BF01897310 |
Reference:
|
[7] Matveev, E.M.: An explicit lower bound for a homogeneous rational linear form in then logarithms of algebraic numbers II.Izv. Math. 64 (2000), 1217–1269. MR 1817252, 10.1070/IM2000v064n06ABEH000314 |
Reference:
|
[8] Mignotte, M.: Intersection des images de certaines suites récurrentes linéaires.Theoret. Comput. Sci. 7.1 (1978), 117–121. Zbl 0393.10009, MR 0498356, 10.1016/0304-3975(78)90043-9 |
Reference:
|
[9] Ribenboim, P.: My numbers, my friends. Popular Lectures on Number Theory.Springer-Verlag, Berlin, Heidelberg, 2000. MR 1761897 |
Reference:
|
[10] Schlickewei, H.P., Schmidt, W.M.: The intersection of recurrence sequences.Acta Arith. 72.1 (1995), 1–4. Zbl 0851.11007, MR 1346803, 10.4064/aa-72-1-1-44 |
. |