Previous |  Up |  Next

Article

Title: Rational Bézier curves with infinitely many integral points (English)
Author: Dospra, Petroula
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 59
Issue: 4
Year: 2023
Pages: 339-349
Summary lang: English
.
Category: math
.
Summary: In this paper we consider rational Bézier curves with control points having rational coordinates and rational weights, and we give necessary and sufficient conditions for such a curve to have infinitely many points with integer coefficients. Furthermore, we give algorithms for the construction of these curves and the computation of theirs points with integer coefficients. (English)
Keyword: Bézier curve
Keyword: rational Bézier curve
Keyword: curve of genus 0
Keyword: integral point
MSC: 14H25
MSC: 14H45
MSC: 14H50
MSC: 14Q05
MSC: 65D17
idZBL: Zbl 07790551
idMR: MR4641950
DOI: 10.5817/AM2023-4-339
.
Date available: 2023-08-15T13:32:48Z
Last updated: 2024-02-13
Stable URL: http://hdl.handle.net/10338.dmlcz/151791
.
Reference: [1] Farine, G.: Curves and Surfaces for CAGD. A Practical Guide.fifth ed., Academic Press, 2002.
Reference: [2] Hoschek, J., Lasser, D.: Fundamentals of Computer Aided Geometric Design.AK Peters, 1993. MR 1258308
Reference: [3] Mortenson, M.E.: Geometric Modelling.Industrial Press Inc., 2006. MR 0794672
Reference: [4] Poulakis, D.: Affine curves with infinitely many integral points.Proc. Amer. Math. Soc. 131 (2) (2002), 1357–1359. MR 1949864, 10.1090/S0002-9939-02-06841-7
Reference: [5] Poulakis, D., Voskos, E.: On the practical solution of genus zero Diophantine equations.J. Symbolic Comput. 30 (2000), 573–582. MR 1797269, 10.1006/jsco.2000.0420
Reference: [6] Poulakis, D., Voskos, E.: Solving genus zero Diophantine equations with at most two infinite valuations.J. Symbolic Comput. 33 (2002), 479–491. MR 1890582, 10.1006/jsco.2001.0515
Reference: [7] Ramanantoanina, A., Hormann, K.: New shape control tools for rational Bézier curve design.Comput. Aided Geom. Design 88 (2021), 11 pp., 102003. MR 4263538, 10.1016/j.cagd.2021.102003
.

Files

Files Size Format View
ArchMathRetro_059-2023-4_3.pdf 422.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo