Previous |  Up |  Next

Article

Title: Webster pseudo-torsion formulas of CR manifolds (English)
Author: Yin, Ho Chor
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 59
Issue: 4
Year: 2023
Pages: 351-367
Summary lang: English
.
Category: math
.
Summary: In this article, we obtain a formula for Webster pseudo-torsion for the link of an isolated singularity of a $n$-dimensional complex subvariety in $\mathbb{C}^{n+1}$ and we present an alternative proof of the Li-Luk formula for Webster pseudo-torsion for a real hypersurface in $\mathbb{C}^{n+1}$. (English)
Keyword: pseudohermitian manifold
Keyword: real hypersuface
Keyword: Webster pseudo-torsion
Keyword: CR geometry
MSC: 53A32
idZBL: Zbl 07790552
idMR: MR4641951
DOI: 10.5817/AM2023-4-351
.
Date available: 2023-08-15T13:33:36Z
Last updated: 2024-02-13
Stable URL: http://hdl.handle.net/10338.dmlcz/151792
.
Reference: [1] Chern, S.S., Moser, J.: Real hypersurfaces in complex manifolds.Acta Math. 133 (1974), 219–271. MR 0425155, 10.1007/BF02392146
Reference: [2] Kan, S.J.: The asymptotic expansion of a CR invariant and Grauert tubes.Math. Ann. 304 (1996), 63–92. MR 1367883, 10.1007/BF01446285
Reference: [3] Li, S.Y., Luk, H.S.: An explicit formula for the Webster torsion of a pseudo-hermitian manifold and its application to torsion-free hypersurfaces.Sci. China Ser. A 49 (2006), 1662–1682. MR 2288223, 10.1007/s11425-006-2071-8
Reference: [4] Luk, H.S.: .
Reference: [5] Tanaka, N.: A differential geometric study of strongly pseudoconvex $CR$ manifold.Kinokuniya Book-Store Co., 1975. MR 0399517
Reference: [6] Webster, S.M.: Pseudohermitian structure on a real hypersurface.J. Differential Geom. 13 (1978), 265–270. MR 0520599, 10.4310/jdg/1214434345
.

Files

Files Size Format View
ArchMathRetro_059-2023-4_4.pdf 509.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo