Previous |  Up |  Next

Article

Keywords:
quantum groups; real forms; quantized enveloping algebras; Harish-Chandra modules
Summary:
We provide a novel construction of quantized universal enveloping $*$-algebras of real semisimple Lie algebras, based on Letzter’s theory of quantum symmetric pairs. We show that these structures can be ‘integrated’, leading to a quantization of the group C$^*$-algebra of an arbitrary semisimple algebraic real Lie group.
References:
[1] Abella, A., Santos, W.F., Hai, M.: Compact coalgebras, compact quantum groups and the positive antipode. São Paulo J. Math. Sci. 3 (2) (2009), 193–229. DOI 10.11606/issn.2316-9028.v3i2p193-229 | MR 2604652
[2] Arano, Y.: Comparison of unitary duals of Drinfeld doubles and complex semisimple Lie groups. Comm. Math. Phys. 351 (3) (2017), 1137–1147. DOI 10.1007/s00220-016-2704-x | MR 3623249
[3] Arano, Y.: Unitary spherical representations of Drinfeld doubles. J. Reine Angew. Math. 742 (2018), 157–186. DOI 10.1515/crelle-2015-0079 | MR 3849625
[4] Baldoni, W., Frajria, P.M.: The quantum analog of a symmetric pair: A construction in type $(C_n, A_1 \times C_{n-1})$. Trans. Amer. Math. Soc. 8 (1997), 3235–3276. DOI 10.1090/S0002-9947-97-01759-5 | MR 1390033
[5] Bao, H., Wang, W.: Canonical bases arising from quantum symmetric pairs. Invent. Math. 213 (3) (2018), 1099–1177. DOI 10.1007/s00222-018-0801-5 | MR 3842062
[6] Caenepeel, S., Militaru, G., Shenglin, Z.: Crossed modules and Doi-Hopf modules. Israel J. Math. 100 (1997), 221–247. DOI 10.1007/BF02773642 | MR 1469112
[7] Chari, V., Pressley, A.N.: A guide to quantum groups. Cambridge University Press, 1995. MR 1358358
[8] Chirvasitu, A.: Relative Fourier transforms and expectations on coideal subalgebras. J. Algebra 516 (2018), 271–297. DOI 10.1016/j.jalgebra.2018.08.033 | MR 3863479
[9] Ciccoli, N., Gavarini, F.: A quantum duality principle for coisotropic subgroups and Poisson quotients. Adv. Math. 199 (2006), 104–135. DOI 10.1016/j.aim.2005.01.009 | MR 2187400
[10] Dăscălescu, S., Năstăsescu, C., Raianu, Ş.: Hopf algebras: An introduction. Monographs and Textbooks in Pure and Applied Mathematics, vol. 235, Marcel Dekker, 2001. MR 1786197
[11] De Commer, K., Dzokou Talla, J.R.: Invariant integrals on coideals and their Drinfeld doubles. Int. Math. Res. Not. 2024 (14) (2024), 10650–10677. DOI 10.1093/imrn/rnae094 | MR 4776189
[12] De Commer, K., Dzokou Talla, J.R.: Quantum $SL(2,\mathbb{R})$ and its irreducible representations. J. Operator Theory 91 (2) (2024), 101–128. MR 4750927
[13] De Commer, K., Matassa, M.: Quantum flag manifolds, quantum symmetric spaces and their associated universal K-matrices. Adv. Math. 366 (2020), 107029. DOI 10.1016/j.aim.2020.107029 | MR 4070299
[14] De Commer, K., Neshveyev, S., Tuset, L., Yamashita, M.: Comparison of quantizations of symmetric spaces: cyclotomic Knizhnik-Zamolodchikov equations and Letzter-Kolb coideals. Forum of Mathematics, Pi, vol. 11 (14), Cambridge University Press, 2023, doi:10.1017/fmp.2023.11. DOI 10.1017/fmp.2023.11 | MR 4585468
[15] De Commer, K., Yamashit, M.: Tannaka-Kreĭn duality for compact quantum homogeneous spaces. I. General Theory. Theory Appl. Categ. 28 (31) (2013), 1099–1138. MR 3121622
[16] Dijkhuizen, M.S.: Some remarks on the construction of quantum symmetric spaces. Representations of Lie Groups, Lie Algebras and Their Quantum Analogues, Acta Appl. Math., vol. 44, Kluwer Academic Publishers, 1996, pp. 59–80. DOI 10.1007/BF00116516 | MR 1407040
[17] Dijkhuizen, M.S., Koornwinder, T.H.: CQG algebras: a direct algebraic approach to compact quantum groups. Lett. Math. Phys. 32 (1994), 315–330. DOI 10.1007/BF00761142 | MR 1310296
[18] Dijkhuizen, M.S., Noumi, M.: A family of quantum projective spaces and related q-hypergeometric orthogonal polynomials. Trans. Amer. Math. Soc. 350 (8) (1998), 3269–3296. DOI 10.1090/S0002-9947-98-01971-0 | MR 1432197
[19] Doi, Y.: Unifying Hopf modules. J. Algebra 153 (1992), 373–385. DOI 10.1016/0021-8693(92)90160-N | MR 1198206
[20] Drinfeld, V.G.: Quantum groups. Proceedings of the International Congress of Mathematicians, Berkeley, Calif., 1986, Amer. Math. Soc., 1987, pp. 798–820. MR 0934283
[21] Drinfeld, V.G.: On Poisson homogeneous spaces of Poisson-Lie groups. Teoret. Mat. Fiz. 95 (2) (1993), 226–227. MR 1243249
[22] Etingof, P., Schiffmann, O.: Lectures on Quantum Groups. Lect. Math. Phys., International Press, 1998. MR 1698405
[23] Jimbo, M.: A $q$-difference analog of $U(\mathfrak{g})$ and the Yang-Baxter equation. Lett. Math. Phys. 10 (1985), 63–69. DOI 10.1007/BF00704588 | MR 0797001
[24] Koelink, E., Kustermans, J.: A locally compact quantum group analogue of the normalizer of $SU(1,1)$ in $SL(2,\mathbb{C})$. Comm. Math. Phys. 233 (2003), 231–296. DOI 10.1007/s00220-002-0736-x | MR 1962042
[25] Kolb, S.: Quantum symmetric Kac-Moody pairs. Adv. Math. 267 (2014), 395–469. DOI 10.1016/j.aim.2014.08.010 | MR 3269184
[26] Koornwinder, T.: Askey-Wilson polynomials as zonal spherical functions on the $SU(2)$ quantum group. SIAM J. Math. Anal 24 (N3) (1993), 795–813. DOI 10.1137/0524049 | MR 1215439
[27] Koppinen, M.: Variations on the smash product with applications to group-graded rings. J. Pure Appl. Algebra 104 (1995), 61–80. DOI 10.1016/0022-4049(94)00124-2 | MR 1359691
[28] Korogodsky, L.I.: Quantum Group $SU(1, 1) \rtimes \mathbb{Z}_2$ and super tensor products. Comm. Math. Phys. 163 (1994), 433–460. DOI 10.1007/BF02101457 | MR 1284791
[29] Letzter, G.: Symmetric pairs for quantized enveloping algebras. J. Algebra 220 (2) (1999), 729–767. DOI 10.1006/jabr.1999.8015 | MR 1717368
[30] Letzter, G.: Coideal subalgebras and quantum symmetric pairs. New directions in Hopf algebras, vol. 43, Cambridge Univ. Press, Cambridge, Math. Sci. Res. Inst. Publ. ed., 2002, pp. 141–170. MR 1913438
[31] Levendorskii, S., Soibelman, Y.: Algebras of Functions on Compact Quantum Groups, Schubert Cells and Quantum Tori. Comm. Math. Phys. 139 (1991), 141–170. DOI 10.1007/BF02102732 | MR 1116413
[32] Müller, E.F., Schneider, H.-J.: Quantum homogeneous spaces with faithfully flat module structures. Israel J. Math. 111 (1999), 157–190. DOI 10.1007/BF02810683 | MR 1710737
[33] Noumi, M.: Macdonalds symmetric polynomials as zonal spherical functions on some quantum homogeneous spaces. Adv. Math. 123 (1) (1996), 16–77. DOI 10.1006/aima.1996.0066 | MR 1413836
[34] Noumi, M., Sugitani, T.: Quantum symmetric spaces and related q-orthogonal polynomials. Group Theoretical Methods in Physics (ICGTMP) (Toyonaka, Japan, 1994), World Sci. Publishing, River Edge, N.J., 1995, pp. 28–40. MR 1413733
[35] Schauenburg, P.: Doi-Koppinen Hopf Modules Versus Entwined Modules. New York J. Math. 6 (200), 325–329. MR 1800353
[36] Takeuchi, M.: Relative Hopfmodules – Equivalences and freeness criteria. J. Algebra 60 (1979), 452–471. DOI 10.1016/0021-8693(79)90093-0 | MR 0549940
[37] Takeuchi, M.: $\mathrm{Ext}_{\mathrm{ad}}(SpR,\mu ^A) \cong \widehat{\mathrm{Br}}(A/k)$. J. Algebra 67 (1980), 436–475. MR 0602073
[38] Twietmeyer, E.: Real forms of $U_q(\mathfrak{g})$. Lett. Math. Phys. 24 (1992), 49–58. MR 1162899
[39] Voigt, C., Yuncken, R.: Complex Semisimple Quantum Groups and Representation Theory. Lecture Notes in Mathematics, vol. 2264, Springer International Publishing, 2020, pp. 376+X pp. MR 4162277
[40] Voigt, C., Yuncken, R.: The Plancherel formula for complex semisimple quantum groups. Ann. Sci. Éc. Norm. Supér. 56 (1) (2023), 299–322. DOI 10.24033/asens.2535 | MR 4637134
[41] Woronowicz, S.L.: Extended $SU(1,1)$ quantum group. Hilbert space level. Preprint KMMF (unfinished) (2000). MR 1616348
[42] Woronowicz, S.L.: Compact matrix pseudogroups. Comm. Math. Phys. 111 (1987), 613–665. DOI 10.1007/BF01219077 | MR 0901157
[43] Woronowicz, S.L.: Tannaka-Krein duality for compact matrix pseudogroups. Twisted $SU(N)$ groups. Invent. Math. 93 (1) (1988), 35–76. DOI 10.1007/BF01393687 | MR 0943923
[44] Woronowicz, S.L.: Unbounded elements affiliated with C$^*$-algebras and noncompact quantum groups. Comm. Math. Phys. 136 (1991), 399–432. DOI 10.1007/BF02100032 | MR 1096123
Partner of
EuDML logo