Title:
|
Quantization of semisimple real Lie groups (English) |
Author:
|
De Commer, Kenny |
Language:
|
English |
Journal:
|
Archivum Mathematicum |
ISSN:
|
0044-8753 (print) |
ISSN:
|
1212-5059 (online) |
Volume:
|
60 |
Issue:
|
5 |
Year:
|
2024 |
Pages:
|
285-310 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
We provide a novel construction of quantized universal enveloping $*$-algebras of real semisimple Lie algebras, based on Letzter’s theory of quantum symmetric pairs. We show that these structures can be ‘integrated’, leading to a quantization of the group C$^*$-algebra of an arbitrary semisimple algebraic real Lie group. (English) |
Keyword:
|
quantum groups |
Keyword:
|
real forms |
Keyword:
|
quantized enveloping algebras |
Keyword:
|
Harish-Chandra modules |
MSC:
|
17B37 |
MSC:
|
20G42 |
MSC:
|
46L67 |
DOI:
|
10.5817/AM2024-5-285 |
. |
Date available:
|
2024-12-13T18:45:27Z |
Last updated:
|
2024-12-13 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/152654 |
. |
Reference:
|
[1] Abella, A., Santos, W.F., Hai, M.: Compact coalgebras, compact quantum groups and the positive antipode.São Paulo J. Math. Sci. 3 (2) (2009), 193–229. MR 2604652, 10.11606/issn.2316-9028.v3i2p193-229 |
Reference:
|
[2] Arano, Y.: Comparison of unitary duals of Drinfeld doubles and complex semisimple Lie groups.Comm. Math. Phys. 351 (3) (2017), 1137–1147. MR 3623249, 10.1007/s00220-016-2704-x |
Reference:
|
[3] Arano, Y.: Unitary spherical representations of Drinfeld doubles.J. Reine Angew. Math. 742 (2018), 157–186. MR 3849625, 10.1515/crelle-2015-0079 |
Reference:
|
[4] Baldoni, W., Frajria, P.M.: The quantum analog of a symmetric pair: A construction in type $(C_n, A_1 \times C_{n-1})$.Trans. Amer. Math. Soc. 8 (1997), 3235–3276. MR 1390033, 10.1090/S0002-9947-97-01759-5 |
Reference:
|
[5] Bao, H., Wang, W.: Canonical bases arising from quantum symmetric pairs.Invent. Math. 213 (3) (2018), 1099–1177. MR 3842062, 10.1007/s00222-018-0801-5 |
Reference:
|
[6] Caenepeel, S., Militaru, G., Shenglin, Z.: Crossed modules and Doi-Hopf modules.Israel J. Math. 100 (1997), 221–247. MR 1469112, 10.1007/BF02773642 |
Reference:
|
[7] Chari, V., Pressley, A.N.: A guide to quantum groups.Cambridge University Press, 1995. MR 1358358 |
Reference:
|
[8] Chirvasitu, A.: Relative Fourier transforms and expectations on coideal subalgebras.J. Algebra 516 (2018), 271–297. MR 3863479, 10.1016/j.jalgebra.2018.08.033 |
Reference:
|
[9] Ciccoli, N., Gavarini, F.: A quantum duality principle for coisotropic subgroups and Poisson quotients.Adv. Math. 199 (2006), 104–135. MR 2187400, 10.1016/j.aim.2005.01.009 |
Reference:
|
[10] Dăscălescu, S., Năstăsescu, C., Raianu, Ş.: Hopf algebras: An introduction.Monographs and Textbooks in Pure and Applied Mathematics, vol. 235, Marcel Dekker, 2001. MR 1786197 |
Reference:
|
[11] De Commer, K., Dzokou Talla, J.R.: Invariant integrals on coideals and their Drinfeld doubles.Int. Math. Res. Not. 2024 (14) (2024), 10650–10677. MR 4776189, 10.1093/imrn/rnae094 |
Reference:
|
[12] De Commer, K., Dzokou Talla, J.R.: Quantum $SL(2,\mathbb{R})$ and its irreducible representations.J. Operator Theory 91 (2) (2024), 101–128. MR 4750927 |
Reference:
|
[13] De Commer, K., Matassa, M.: Quantum flag manifolds, quantum symmetric spaces and their associated universal K-matrices.Adv. Math. 366 (2020), 107029. MR 4070299, 10.1016/j.aim.2020.107029 |
Reference:
|
[14] De Commer, K., Neshveyev, S., Tuset, L., Yamashita, M.: Comparison of quantizations of symmetric spaces: cyclotomic Knizhnik-Zamolodchikov equations and Letzter-Kolb coideals.Forum of Mathematics, Pi, vol. 11 (14), Cambridge University Press, 2023, doi:10.1017/fmp.2023.11. MR 4585468, 10.1017/fmp.2023.11 |
Reference:
|
[15] De Commer, K., Yamashit, M.: Tannaka-Kreĭn duality for compact quantum homogeneous spaces. I. General Theory.Theory Appl. Categ. 28 (31) (2013), 1099–1138. MR 3121622 |
Reference:
|
[16] Dijkhuizen, M.S.: Some remarks on the construction of quantum symmetric spaces.Representations of Lie Groups, Lie Algebras and Their Quantum Analogues, Acta Appl. Math., vol. 44, Kluwer Academic Publishers, 1996, pp. 59–80. MR 1407040, 10.1007/BF00116516 |
Reference:
|
[17] Dijkhuizen, M.S., Koornwinder, T.H.: CQG algebras: a direct algebraic approach to compact quantum groups.Lett. Math. Phys. 32 (1994), 315–330. MR 1310296, 10.1007/BF00761142 |
Reference:
|
[18] Dijkhuizen, M.S., Noumi, M.: A family of quantum projective spaces and related q-hypergeometric orthogonal polynomials.Trans. Amer. Math. Soc. 350 (8) (1998), 3269–3296. MR 1432197, 10.1090/S0002-9947-98-01971-0 |
Reference:
|
[19] Doi, Y.: Unifying Hopf modules.J. Algebra 153 (1992), 373–385. MR 1198206, 10.1016/0021-8693(92)90160-N |
Reference:
|
[20] Drinfeld, V.G.: Quantum groups.Proceedings of the International Congress of Mathematicians, Berkeley, Calif., 1986, Amer. Math. Soc., 1987, pp. 798–820. MR 0934283 |
Reference:
|
[21] Drinfeld, V.G.: On Poisson homogeneous spaces of Poisson-Lie groups.Teoret. Mat. Fiz. 95 (2) (1993), 226–227. MR 1243249 |
Reference:
|
[22] Etingof, P., Schiffmann, O.: Lectures on Quantum Groups.Lect. Math. Phys., International Press, 1998. MR 1698405 |
Reference:
|
[23] Jimbo, M.: A $q$-difference analog of $U(\mathfrak{g})$ and the Yang-Baxter equation.Lett. Math. Phys. 10 (1985), 63–69. MR 0797001, 10.1007/BF00704588 |
Reference:
|
[24] Koelink, E., Kustermans, J.: A locally compact quantum group analogue of the normalizer of $SU(1,1)$ in $SL(2,\mathbb{C})$.Comm. Math. Phys. 233 (2003), 231–296. MR 1962042, 10.1007/s00220-002-0736-x |
Reference:
|
[25] Kolb, S.: Quantum symmetric Kac-Moody pairs.Adv. Math. 267 (2014), 395–469. MR 3269184, 10.1016/j.aim.2014.08.010 |
Reference:
|
[26] Koornwinder, T.: Askey-Wilson polynomials as zonal spherical functions on the $SU(2)$ quantum group.SIAM J. Math. Anal 24 (N3) (1993), 795–813. MR 1215439, 10.1137/0524049 |
Reference:
|
[27] Koppinen, M.: Variations on the smash product with applications to group-graded rings.J. Pure Appl. Algebra 104 (1995), 61–80. MR 1359691, 10.1016/0022-4049(94)00124-2 |
Reference:
|
[28] Korogodsky, L.I.: Quantum Group $SU(1, 1) \rtimes \mathbb{Z}_2$ and super tensor products.Comm. Math. Phys. 163 (1994), 433–460. MR 1284791, 10.1007/BF02101457 |
Reference:
|
[29] Letzter, G.: Symmetric pairs for quantized enveloping algebras.J. Algebra 220 (2) (1999), 729–767. MR 1717368, 10.1006/jabr.1999.8015 |
Reference:
|
[30] Letzter, G.: Coideal subalgebras and quantum symmetric pairs.New directions in Hopf algebras, vol. 43, Cambridge Univ. Press, Cambridge, Math. Sci. Res. Inst. Publ. ed., 2002, pp. 141–170. MR 1913438 |
Reference:
|
[31] Levendorskii, S., Soibelman, Y.: Algebras of Functions on Compact Quantum Groups, Schubert Cells and Quantum Tori.Comm. Math. Phys. 139 (1991), 141–170. MR 1116413, 10.1007/BF02102732 |
Reference:
|
[32] Müller, E.F., Schneider, H.-J.: Quantum homogeneous spaces with faithfully flat module structures.Israel J. Math. 111 (1999), 157–190. MR 1710737, 10.1007/BF02810683 |
Reference:
|
[33] Noumi, M.: Macdonalds symmetric polynomials as zonal spherical functions on some quantum homogeneous spaces.Adv. Math. 123 (1) (1996), 16–77. MR 1413836, 10.1006/aima.1996.0066 |
Reference:
|
[34] Noumi, M., Sugitani, T.: Quantum symmetric spaces and related q-orthogonal polynomials.Group Theoretical Methods in Physics (ICGTMP) (Toyonaka, Japan, 1994), World Sci. Publishing, River Edge, N.J., 1995, pp. 28–40. MR 1413733 |
Reference:
|
[35] Schauenburg, P.: Doi-Koppinen Hopf Modules Versus Entwined Modules.New York J. Math. 6 (200), 325–329. MR 1800353 |
Reference:
|
[36] Takeuchi, M.: Relative Hopfmodules – Equivalences and freeness criteria.J. Algebra 60 (1979), 452–471. MR 0549940, 10.1016/0021-8693(79)90093-0 |
Reference:
|
[37] Takeuchi, M.: $\mathrm{Ext}_{\mathrm{ad}}(SpR,\mu ^A) \cong \widehat{\mathrm{Br}}(A/k)$.J. Algebra 67 (1980), 436–475. MR 0602073 |
Reference:
|
[38] Twietmeyer, E.: Real forms of $U_q(\mathfrak{g})$.Lett. Math. Phys. 24 (1992), 49–58. MR 1162899 |
Reference:
|
[39] Voigt, C., Yuncken, R.: Complex Semisimple Quantum Groups and Representation Theory.Lecture Notes in Mathematics, vol. 2264, Springer International Publishing, 2020, pp. 376+X pp. MR 4162277 |
Reference:
|
[40] Voigt, C., Yuncken, R.: The Plancherel formula for complex semisimple quantum groups.Ann. Sci. Éc. Norm. Supér. 56 (1) (2023), 299–322. MR 4637134, 10.24033/asens.2535 |
Reference:
|
[41] Woronowicz, S.L.: Extended $SU(1,1)$ quantum group. Hilbert space level.Preprint KMMF (unfinished) (2000). MR 1616348 |
Reference:
|
[42] Woronowicz, S.L.: Compact matrix pseudogroups.Comm. Math. Phys. 111 (1987), 613–665. MR 0901157, 10.1007/BF01219077 |
Reference:
|
[43] Woronowicz, S.L.: Tannaka-Krein duality for compact matrix pseudogroups. Twisted $SU(N)$ groups.Invent. Math. 93 (1) (1988), 35–76. MR 0943923, 10.1007/BF01393687 |
Reference:
|
[44] Woronowicz, S.L.: Unbounded elements affiliated with C$^*$-algebras and noncompact quantum groups.Comm. Math. Phys. 136 (1991), 399–432. MR 1096123, 10.1007/BF02100032 |
. |