Previous |  Up |  Next

Article

Title: Quantization of semisimple real Lie groups (English)
Author: De Commer, Kenny
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 60
Issue: 5
Year: 2024
Pages: 285-310
Summary lang: English
.
Category: math
.
Summary: We provide a novel construction of quantized universal enveloping $*$-algebras of real semisimple Lie algebras, based on Letzter’s theory of quantum symmetric pairs. We show that these structures can be ‘integrated’, leading to a quantization of the group C$^*$-algebra of an arbitrary semisimple algebraic real Lie group. (English)
Keyword: quantum groups
Keyword: real forms
Keyword: quantized enveloping algebras
Keyword: Harish-Chandra modules
MSC: 17B37
MSC: 20G42
MSC: 46L67
DOI: 10.5817/AM2024-5-285
.
Date available: 2024-12-13T18:45:27Z
Last updated: 2024-12-13
Stable URL: http://hdl.handle.net/10338.dmlcz/152654
.
Reference: [1] Abella, A., Santos, W.F., Hai, M.: Compact coalgebras, compact quantum groups and the positive antipode.São Paulo J. Math. Sci. 3 (2) (2009), 193–229. MR 2604652, 10.11606/issn.2316-9028.v3i2p193-229
Reference: [2] Arano, Y.: Comparison of unitary duals of Drinfeld doubles and complex semisimple Lie groups.Comm. Math. Phys. 351 (3) (2017), 1137–1147. MR 3623249, 10.1007/s00220-016-2704-x
Reference: [3] Arano, Y.: Unitary spherical representations of Drinfeld doubles.J. Reine Angew. Math. 742 (2018), 157–186. MR 3849625, 10.1515/crelle-2015-0079
Reference: [4] Baldoni, W., Frajria, P.M.: The quantum analog of a symmetric pair: A construction in type $(C_n, A_1 \times C_{n-1})$.Trans. Amer. Math. Soc. 8 (1997), 3235–3276. MR 1390033, 10.1090/S0002-9947-97-01759-5
Reference: [5] Bao, H., Wang, W.: Canonical bases arising from quantum symmetric pairs.Invent. Math. 213 (3) (2018), 1099–1177. MR 3842062, 10.1007/s00222-018-0801-5
Reference: [6] Caenepeel, S., Militaru, G., Shenglin, Z.: Crossed modules and Doi-Hopf modules.Israel J. Math. 100 (1997), 221–247. MR 1469112, 10.1007/BF02773642
Reference: [7] Chari, V., Pressley, A.N.: A guide to quantum groups.Cambridge University Press, 1995. MR 1358358
Reference: [8] Chirvasitu, A.: Relative Fourier transforms and expectations on coideal subalgebras.J. Algebra 516 (2018), 271–297. MR 3863479, 10.1016/j.jalgebra.2018.08.033
Reference: [9] Ciccoli, N., Gavarini, F.: A quantum duality principle for coisotropic subgroups and Poisson quotients.Adv. Math. 199 (2006), 104–135. MR 2187400, 10.1016/j.aim.2005.01.009
Reference: [10] Dăscălescu, S., Năstăsescu, C., Raianu, Ş.: Hopf algebras: An introduction.Monographs and Textbooks in Pure and Applied Mathematics, vol. 235, Marcel Dekker, 2001. MR 1786197
Reference: [11] De Commer, K., Dzokou Talla, J.R.: Invariant integrals on coideals and their Drinfeld doubles.Int. Math. Res. Not. 2024 (14) (2024), 10650–10677. MR 4776189, 10.1093/imrn/rnae094
Reference: [12] De Commer, K., Dzokou Talla, J.R.: Quantum $SL(2,\mathbb{R})$ and its irreducible representations.J. Operator Theory 91 (2) (2024), 101–128. MR 4750927
Reference: [13] De Commer, K., Matassa, M.: Quantum flag manifolds, quantum symmetric spaces and their associated universal K-matrices.Adv. Math. 366 (2020), 107029. MR 4070299, 10.1016/j.aim.2020.107029
Reference: [14] De Commer, K., Neshveyev, S., Tuset, L., Yamashita, M.: Comparison of quantizations of symmetric spaces: cyclotomic Knizhnik-Zamolodchikov equations and Letzter-Kolb coideals.Forum of Mathematics, Pi, vol. 11 (14), Cambridge University Press, 2023, doi:10.1017/fmp.2023.11. MR 4585468, 10.1017/fmp.2023.11
Reference: [15] De Commer, K., Yamashit, M.: Tannaka-Kreĭn duality for compact quantum homogeneous spaces. I. General Theory.Theory Appl. Categ. 28 (31) (2013), 1099–1138. MR 3121622
Reference: [16] Dijkhuizen, M.S.: Some remarks on the construction of quantum symmetric spaces.Representations of Lie Groups, Lie Algebras and Their Quantum Analogues, Acta Appl. Math., vol. 44, Kluwer Academic Publishers, 1996, pp. 59–80. MR 1407040, 10.1007/BF00116516
Reference: [17] Dijkhuizen, M.S., Koornwinder, T.H.: CQG algebras: a direct algebraic approach to compact quantum groups.Lett. Math. Phys. 32 (1994), 315–330. MR 1310296, 10.1007/BF00761142
Reference: [18] Dijkhuizen, M.S., Noumi, M.: A family of quantum projective spaces and related q-hypergeometric orthogonal polynomials.Trans. Amer. Math. Soc. 350 (8) (1998), 3269–3296. MR 1432197, 10.1090/S0002-9947-98-01971-0
Reference: [19] Doi, Y.: Unifying Hopf modules.J. Algebra 153 (1992), 373–385. MR 1198206, 10.1016/0021-8693(92)90160-N
Reference: [20] Drinfeld, V.G.: Quantum groups.Proceedings of the International Congress of Mathematicians, Berkeley, Calif., 1986, Amer. Math. Soc., 1987, pp. 798–820. MR 0934283
Reference: [21] Drinfeld, V.G.: On Poisson homogeneous spaces of Poisson-Lie groups.Teoret. Mat. Fiz. 95 (2) (1993), 226–227. MR 1243249
Reference: [22] Etingof, P., Schiffmann, O.: Lectures on Quantum Groups.Lect. Math. Phys., International Press, 1998. MR 1698405
Reference: [23] Jimbo, M.: A $q$-difference analog of $U(\mathfrak{g})$ and the Yang-Baxter equation.Lett. Math. Phys. 10 (1985), 63–69. MR 0797001, 10.1007/BF00704588
Reference: [24] Koelink, E., Kustermans, J.: A locally compact quantum group analogue of the normalizer of $SU(1,1)$ in $SL(2,\mathbb{C})$.Comm. Math. Phys. 233 (2003), 231–296. MR 1962042, 10.1007/s00220-002-0736-x
Reference: [25] Kolb, S.: Quantum symmetric Kac-Moody pairs.Adv. Math. 267 (2014), 395–469. MR 3269184, 10.1016/j.aim.2014.08.010
Reference: [26] Koornwinder, T.: Askey-Wilson polynomials as zonal spherical functions on the $SU(2)$ quantum group.SIAM J. Math. Anal 24 (N3) (1993), 795–813. MR 1215439, 10.1137/0524049
Reference: [27] Koppinen, M.: Variations on the smash product with applications to group-graded rings.J. Pure Appl. Algebra 104 (1995), 61–80. MR 1359691, 10.1016/0022-4049(94)00124-2
Reference: [28] Korogodsky, L.I.: Quantum Group $SU(1, 1) \rtimes \mathbb{Z}_2$ and super tensor products.Comm. Math. Phys. 163 (1994), 433–460. MR 1284791, 10.1007/BF02101457
Reference: [29] Letzter, G.: Symmetric pairs for quantized enveloping algebras.J. Algebra 220 (2) (1999), 729–767. MR 1717368, 10.1006/jabr.1999.8015
Reference: [30] Letzter, G.: Coideal subalgebras and quantum symmetric pairs.New directions in Hopf algebras, vol. 43, Cambridge Univ. Press, Cambridge, Math. Sci. Res. Inst. Publ. ed., 2002, pp. 141–170. MR 1913438
Reference: [31] Levendorskii, S., Soibelman, Y.: Algebras of Functions on Compact Quantum Groups, Schubert Cells and Quantum Tori.Comm. Math. Phys. 139 (1991), 141–170. MR 1116413, 10.1007/BF02102732
Reference: [32] Müller, E.F., Schneider, H.-J.: Quantum homogeneous spaces with faithfully flat module structures.Israel J. Math. 111 (1999), 157–190. MR 1710737, 10.1007/BF02810683
Reference: [33] Noumi, M.: Macdonalds symmetric polynomials as zonal spherical functions on some quantum homogeneous spaces.Adv. Math. 123 (1) (1996), 16–77. MR 1413836, 10.1006/aima.1996.0066
Reference: [34] Noumi, M., Sugitani, T.: Quantum symmetric spaces and related q-orthogonal polynomials.Group Theoretical Methods in Physics (ICGTMP) (Toyonaka, Japan, 1994), World Sci. Publishing, River Edge, N.J., 1995, pp. 28–40. MR 1413733
Reference: [35] Schauenburg, P.: Doi-Koppinen Hopf Modules Versus Entwined Modules.New York J. Math. 6 (200), 325–329. MR 1800353
Reference: [36] Takeuchi, M.: Relative Hopfmodules – Equivalences and freeness criteria.J. Algebra 60 (1979), 452–471. MR 0549940, 10.1016/0021-8693(79)90093-0
Reference: [37] Takeuchi, M.: $\mathrm{Ext}_{\mathrm{ad}}(SpR,\mu ^A) \cong \widehat{\mathrm{Br}}(A/k)$.J. Algebra 67 (1980), 436–475. MR 0602073
Reference: [38] Twietmeyer, E.: Real forms of $U_q(\mathfrak{g})$.Lett. Math. Phys. 24 (1992), 49–58. MR 1162899
Reference: [39] Voigt, C., Yuncken, R.: Complex Semisimple Quantum Groups and Representation Theory.Lecture Notes in Mathematics, vol. 2264, Springer International Publishing, 2020, pp. 376+X pp. MR 4162277
Reference: [40] Voigt, C., Yuncken, R.: The Plancherel formula for complex semisimple quantum groups.Ann. Sci. Éc. Norm. Supér. 56 (1) (2023), 299–322. MR 4637134, 10.24033/asens.2535
Reference: [41] Woronowicz, S.L.: Extended $SU(1,1)$ quantum group. Hilbert space level.Preprint KMMF (unfinished) (2000). MR 1616348
Reference: [42] Woronowicz, S.L.: Compact matrix pseudogroups.Comm. Math. Phys. 111 (1987), 613–665. MR 0901157, 10.1007/BF01219077
Reference: [43] Woronowicz, S.L.: Tannaka-Krein duality for compact matrix pseudogroups. Twisted $SU(N)$ groups.Invent. Math. 93 (1) (1988), 35–76. MR 0943923, 10.1007/BF01393687
Reference: [44] Woronowicz, S.L.: Unbounded elements affiliated with C$^*$-algebras and noncompact quantum groups.Comm. Math. Phys. 136 (1991), 399–432. MR 1096123, 10.1007/BF02100032
.

Files

Files Size Format View
ArchMathRetro_060-2024-5_2.pdf 632.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo