Previous |  Up |  Next

Article

Keywords:
quantum group; Clifford algebra; quantised exterior algebra; $\mathfrak{g}$-differential algebra
Summary:
We propose a definition of a quantised ${\mathfrak{sl}}_2$-differential algebra and show that the quantised exterior algebra (defined by Berenstein and Zwicknagl) and the quantised Clifford algebra (defined by the authors) of ${\mathfrak{sl}}_2$ are natural examples of such algebras.
References:
[1] Alekseev, A., Krutov, A.: Group-valued moment maps on even and odd simple $\mathfrak{g}$-modules. In preparations.
[2] Alekseev, A., Meinrenken, E.: The non-commutative Weil algebra. Invent. Math. 139 (1) (2000), 135–172, arXiv:math/9903052 [math.DG]. DOI 10.1007/s002229900025 | MR 1728878
[3] Alekseev, A., Meinrenken, E.: Lie theory and the Chern-Weil homomorphism. Ann. Sci. Éc. Norm. Supér. (4) 38 (2) (2005), 303–338, arXiv:math/0308135 [math.RT]. MR 2144989
[4] Aschieri, P., Castellani, L.: An introduction to noncommutative differential geometry on quantum groups. Internat. J. Modern Phys. A 8 (10) (1993), 1667–1706. DOI 10.1142/S0217751X93000692 | MR 1216230
[5] Aschieri, P., Schupp, P.: Vector fields on quantum groups. Internat. J. Modern Phys. A 11 (6) (1996), 1077–1100. DOI 10.1142/S0217751X9600050X | MR 1376230
[6] Berenstein, A., Zwicknagl, S.: Braided symmetric and exterior algebras. Trans. Amer. Math. Soc. 360 (71) (2008), 3429–3472, arXiv:math/0504155 [math.QA]. DOI 10.1090/S0002-9947-08-04373-0 | MR 2386232
[7] Bouarroudj, S., Krutov, A., Leites, D., Shchepochkina, I.: Non-degenerate invariant (super) symmetric bilinear forms on simple Lie (super)algebras. Algebr. Represent. Theory 21 (5) (2018), 897–941, arXiv:1806.05505 [math.RT]. DOI 10.1007/s10468-018-9802-8 | MR 3855668
[8] Cartan, H.: La transgression dans un groupe de Lie et dans un espace fibré principal. Colloque de topologie (espaces fibrés), Bruxelles, 1950, Georges Thone, Liège, 1951, pp. 57–71. MR 0042427
[9] Cartan, H.: Notions d’algèbre différentielle; application aux groupes de Lie et aux variétés où opère un groupe de Lie. Colloque de topologie (espaces fibrés), Bruxelles, 1950, Georges Thone, Liège; Masson $\&$ Cie, Paris, 1951, pp. 15–27. MR 0042426
[10] Cheng, S.-J.: Differentiably simple Lie superalgebras and representations of semisimple Lie superalgebras. J. Algebra 173 (1) (1995), 1–43. DOI 10.1006/jabr.1995.1076 | MR 1327359
[11] Drinfeld, V. G.: Quasi-Hopf algebras. Algebra i Analiz 1 (6) (1989), 114–148. MR 1047964
[12] Drinfeld, V.G.: Quantum groups. Proceedings of the International Congress of Mathematicians, Amer. Math. Soc., Providence, RI, Berkeley, Calif., 1986, 1987, pp. 798–820. MR 0934283
[13] Etingof, P., Gelaki, S., Nikshych, D., Ostrik, V.: Tensor categories. Mathematical Surveys and Monographs, American Mathematical Society, Providence, RI, 2015. MR 3242743
[14] Guillemin, V.W., Sternberg, S.: Supersymmetry and equivariant de Rham theory. Mathematics Past and Present, Springer-Verlag, Berlin, 1999, With an appendix containing two reprints by Henri Cartan [MR0042426 (13,107e); MR0042427 (13,107f)]. MR 1689252
[15] Henriques, A., Kamnitzer, J.: Crystals and coboundary categories. Duke Math. J. 132 (2) (2006), 191–216. DOI 10.1215/S0012-7094-06-13221-0 | MR 2219257
[16] Huang, J.-S., Pandžić, P.: Dirac cohomology, unitary representations and a proof of a conjecture of Vogan. J. Amer. Math. Soc. 15 (1) (2002), 185–202. DOI 10.1090/S0894-0347-01-00383-6 | MR 1862801
[17] Huang, J.-S., Pandžić, P.: Dirac operators in representation theory. Mathematics: Theory $\&$ Applications, Birkhäuser Boston, Inc., Boston, MA,, 2006. MR 2244116 | Zbl 1103.22008
[18] Jurčo, B.: Differential calculus on quantized simple Lie groups. Lett. Math. Phys. 22 (3) (1991), 177–186. DOI 10.1007/BF00403543 | MR 1129172
[19] Klimyk, A., Schmüdgen, K.: Quantum groups and their representations. Texts and Monographs in Physics, Springer-Verlag, Berlin, 1997. MR 1492989
[20] Kostant, B.: Clifford algebra analogue of the Hopf-Koszul-Samelson theorem, the $\rho $-decomposition $C(\mathfrak{g}) =$ End$V_\rho \otimes C(P)$, and the $\mathfrak{g}$-module structure of $\bigwedge \mathfrak{g}$. Adv. Math. 125 (2) (1997), 275–350. DOI 10.1006/aima.1997.1608 | MR 1434113
[21] Krutov, A., Pandžić, P.: Cubic Dirac operator for $U_q({\mathfrak{sl}}_2)$. arXiv:2209.09591 [math.RT].
[22] Krutov, A.O., Ó Buachalla, R., Strung, K.R.: Nichols algebras and quantum principal bundles. Int. Math. Res. Not. 2023 (23) (2023), 20076–20117. DOI 10.1093/imrn/rnac366 | MR 4675067
[23] Lu, J.-H.: Moment maps at the quantum level. Comm. Math. Phys. 157 (2) (1993), 389–404. DOI 10.1007/BF02099767 | MR 1244874
[24] Meinrenken, E.: Clifford algebras and Lie theory. Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], vol. 58, Springer, Heidelberg, 2013. MR 3052646
[25] Schupp, P., Watts, P., Zumino, B.: Cartan calculus on quantum Lie algebras. Differential geometric methods in theoretical physics (Ixtapa-Zihuatanejo, 1993), 1994, pp. 125–134. MR 1337698
[26] Woronowicz, S.L.: Twisted SU(2) group. An example of a noncommutative differential calculus. (2) group. An example of a noncommutative differential calculus, Publ. Res. Inst. Math. Sci. 23 (1) (1987), 117–181. DOI 10.2977/prims/1195176848 | MR 0890482
Partner of
EuDML logo