Title:
|
Quantised $\mathfrak{sl}_2$-differential algebras (English) |
Author:
|
Krutov, Andrey |
Author:
|
Pandžić, Pavle |
Language:
|
English |
Journal:
|
Archivum Mathematicum |
ISSN:
|
0044-8753 (print) |
ISSN:
|
1212-5059 (online) |
Volume:
|
60 |
Issue:
|
5 |
Year:
|
2024 |
Pages:
|
351-364 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
We propose a definition of a quantised ${\mathfrak{sl}}_2$-differential algebra and show that the quantised exterior algebra (defined by Berenstein and Zwicknagl) and the quantised Clifford algebra (defined by the authors) of ${\mathfrak{sl}}_2$ are natural examples of such algebras. (English) |
Keyword:
|
quantum group |
Keyword:
|
Clifford algebra |
Keyword:
|
quantised exterior algebra |
Keyword:
|
$\mathfrak{g}$-differential algebra |
MSC:
|
16T20 |
MSC:
|
17B37 |
MSC:
|
81R50 |
DOI:
|
10.5817/AM2024-5-351 |
. |
Date available:
|
2024-12-13T18:49:52Z |
Last updated:
|
2024-12-13 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/152656 |
. |
Reference:
|
[1] Alekseev, A., Krutov, A.: Group-valued moment maps on even and odd simple $\mathfrak{g}$-modules.In preparations. |
Reference:
|
[2] Alekseev, A., Meinrenken, E.: The non-commutative Weil algebra.Invent. Math. 139 (1) (2000), 135–172, arXiv:math/9903052 [math.DG]. MR 1728878, 10.1007/s002229900025 |
Reference:
|
[3] Alekseev, A., Meinrenken, E.: Lie theory and the Chern-Weil homomorphism.Ann. Sci. Éc. Norm. Supér. (4) 38 (2) (2005), 303–338, arXiv:math/0308135 [math.RT]. MR 2144989 |
Reference:
|
[4] Aschieri, P., Castellani, L.: An introduction to noncommutative differential geometry on quantum groups.Internat. J. Modern Phys. A 8 (10) (1993), 1667–1706. MR 1216230, 10.1142/S0217751X93000692 |
Reference:
|
[5] Aschieri, P., Schupp, P.: Vector fields on quantum groups.Internat. J. Modern Phys. A 11 (6) (1996), 1077–1100. MR 1376230, 10.1142/S0217751X9600050X |
Reference:
|
[6] Berenstein, A., Zwicknagl, S.: Braided symmetric and exterior algebras.Trans. Amer. Math. Soc. 360 (71) (2008), 3429–3472, arXiv:math/0504155 [math.QA]. MR 2386232, 10.1090/S0002-9947-08-04373-0 |
Reference:
|
[7] Bouarroudj, S., Krutov, A., Leites, D., Shchepochkina, I.: Non-degenerate invariant (super) symmetric bilinear forms on simple Lie (super)algebras.Algebr. Represent. Theory 21 (5) (2018), 897–941, arXiv:1806.05505 [math.RT]. MR 3855668, 10.1007/s10468-018-9802-8 |
Reference:
|
[8] Cartan, H.: La transgression dans un groupe de Lie et dans un espace fibré principal.Colloque de topologie (espaces fibrés), Bruxelles, 1950, Georges Thone, Liège, 1951, pp. 57–71. MR 0042427 |
Reference:
|
[9] Cartan, H.: Notions d’algèbre différentielle; application aux groupes de Lie et aux variétés où opère un groupe de Lie.Colloque de topologie (espaces fibrés), Bruxelles, 1950, Georges Thone, Liège; Masson $\&$ Cie, Paris, 1951, pp. 15–27. MR 0042426 |
Reference:
|
[10] Cheng, S.-J.: Differentiably simple Lie superalgebras and representations of semisimple Lie superalgebras.J. Algebra 173 (1) (1995), 1–43. MR 1327359, 10.1006/jabr.1995.1076 |
Reference:
|
[11] Drinfeld, V. G.: Quasi-Hopf algebras.Algebra i Analiz 1 (6) (1989), 114–148. MR 1047964 |
Reference:
|
[12] Drinfeld, V.G.: Quantum groups,.Proceedings of the International Congress of Mathematicians, Amer. Math. Soc., Providence, RI, Berkeley, Calif., 1986, 1987, pp. 798–820. MR 0934283 |
Reference:
|
[13] Etingof, P., Gelaki, S., Nikshych, D., Ostrik, V.: Tensor categories.Mathematical Surveys and Monographs, American Mathematical Society, Providence, RI, 2015. MR 3242743 |
Reference:
|
[14] Guillemin, V.W., Sternberg, S.: Supersymmetry and equivariant de Rham theory.Mathematics Past and Present, Springer-Verlag, Berlin, 1999, With an appendix containing two reprints by Henri Cartan [MR0042426 (13,107e); MR0042427 (13,107f)]. MR 1689252 |
Reference:
|
[15] Henriques, A., Kamnitzer, J.: Crystals and coboundary categories.Duke Math. J. 132 (2) (2006), 191–216. MR 2219257, 10.1215/S0012-7094-06-13221-0 |
Reference:
|
[16] Huang, J.-S., Pandžić, P.: Dirac cohomology, unitary representations and a proof of a conjecture of Vogan.J. Amer. Math. Soc. 15 (1) (2002), 185–202. MR 1862801, 10.1090/S0894-0347-01-00383-6 |
Reference:
|
[17] Huang, J.-S., Pandžić, P.: Dirac operators in representation theory.Mathematics: Theory $\&$ Applications, Birkhäuser Boston, Inc., Boston, MA,, 2006. Zbl 1103.22008, MR 2244116 |
Reference:
|
[18] Jurčo, B.: Differential calculus on quantized simple Lie groups.Lett. Math. Phys. 22 (3) (1991), 177–186. MR 1129172, 10.1007/BF00403543 |
Reference:
|
[19] Klimyk, A., Schmüdgen, K.: Quantum groups and their representations.Texts and Monographs in Physics, Springer-Verlag, Berlin, 1997. MR 1492989 |
Reference:
|
[20] Kostant, B.: Clifford algebra analogue of the Hopf-Koszul-Samelson theorem, the $\rho $-decomposition $C(\mathfrak{g}) =$ End$V_\rho \otimes C(P)$, and the $\mathfrak{g}$-module structure of $\bigwedge \mathfrak{g}$.Adv. Math. 125 (2) (1997), 275–350. MR 1434113, 10.1006/aima.1997.1608 |
Reference:
|
[21] Krutov, A., Pandžić, P.: Cubic Dirac operator for $U_q({\mathfrak{sl}}_2)$.arXiv:2209.09591 [math.RT]. |
Reference:
|
[22] Krutov, A.O., Ó Buachalla, R., Strung, K.R.: Nichols algebras and quantum principal bundles.Int. Math. Res. Not. 2023 (23) (2023), 20076–20117. MR 4675067, 10.1093/imrn/rnac366 |
Reference:
|
[23] Lu, J.-H.: Moment maps at the quantum level.Comm. Math. Phys. 157 (2) (1993), 389–404. MR 1244874, 10.1007/BF02099767 |
Reference:
|
[24] Meinrenken, E.: Clifford algebras and Lie theory.Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], vol. 58, Springer, Heidelberg, 2013. MR 3052646 |
Reference:
|
[25] Schupp, P., Watts, P., Zumino, B.: Cartan calculus on quantum Lie algebras.Differential geometric methods in theoretical physics (Ixtapa-Zihuatanejo, 1993), 1994, pp. 125–134. MR 1337698 |
Reference:
|
[26] Woronowicz, S.L.: Twisted SU(2) group. An example of a noncommutative differential calculus.(2) group. An example of a noncommutative differential calculus, Publ. Res. Inst. Math. Sci. 23 (1) (1987), 117–181. MR 0890482, 10.2977/prims/1195176848 |
. |