Previous |  Up |  Next

Article

Title: Braided coproduct, antipode and adjoint action for $U_q(sl_2)$ (English)
Author: Pandžić, Pavle
Author: Somberg, Petr
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 60
Issue: 5
Year: 2024
Pages: 365-376
Summary lang: English
.
Category: math
.
Summary: Motivated by our attempts to construct an analogue of the Dirac operator in the setting of $U_q(\mathfrak{sl}_n)$, we write down explicitly the braided coproduct, antipode, and adjoint action for quantum algebra $U_q(\mathfrak{sl}_2)$. The braided adjoint action is seen to coincide with the ordinary quantum adjoint action, which also follows from the general results of S. Majid. (English)
Keyword: quantum group
Keyword: quantum $\mathfrak{sl}_2$
Keyword: quantum adjoint action
Keyword: tensor categories
Keyword: braided tensor product
Keyword: braided adjoint action
MSC: 16T20
MSC: 20G42
DOI: 10.5817/AM2024-5-365
.
Date available: 2024-12-13T18:51:00Z
Last updated: 2024-12-13
Stable URL: http://hdl.handle.net/10338.dmlcz/152657
.
Reference: [1] Burdik, C., Navratil, O., Posta, S.: The adjoint representation of quantum algebra $U_q(sl_2)$.J. Nonlinear Math. Phys. 16 (1) (2009), 63–75. MR 2571814, 10.1142/S1402925109000066
Reference: [2] Huang, J.-S., Pandžić, P.: Dirac cohomology, unitary representations and a proof of a conjecture of Vogan.J. Amer. Math. Soc. 15 (1) (2002), 185–202. MR 1862801, 10.1090/S0894-0347-01-00383-6
Reference: [3] Huang, J.-S., Pandžić, P.: Dirac Operators in Representation Theory.Mathematics: Theory and Applications, Birkhauser, 2006. MR 2244116
Reference: [4] Klimyk, A., Schmüdgen, K.: Quantum groups and their representations.Texts and Monographs in Physics, pp. xx+552, Springer-Verlag, Berlin, 1997. MR 1492989
Reference: [5] Majid, S.: Quantum and braided linear algebra.J. Math. Phys. 34 (1993), 1176–1196, https://doi.org/10.1063/1.530193. MR 1207978, 10.1063/1.530193
Reference: [6] Majid, S.: Transmutation theory and rank for quantum braided groups.Mathematical Proceedings of the Cambridge Philosophical Society, vol. 113, 1993, pp. 45–70. MR 1188817, 10.1017/S0305004100075769
Reference: [7] Majid, S.: Algebras and Hopf algebras in braided categories.Advances in Hopf algebras, vol. 158, Marcel Dekker, Lec. Notes Pure Appl. Math. ed., 1994. MR 1289422
Reference: [8] Majid, S.: Foundations of Quantum Group Theory.Cambridge University Press, 1995. MR 1381692
Reference: [9] Majid, S.: Quantum and braided ZX calculus.J. Phys. A: Math. Theor. 55 (2022), 34 pp., paper No. 254007. MR 4438638, 10.1088/1751-8121/ac631f
Reference: [10] Pandžić, P., Somberg, P.: Dirac operator for the quantum group $U_q(\mathfrak{sl}_3)$.in preparation.
Reference: [11] Pandžić, P., Somberg, P.: Dirac operator and its cohomology for the quantum group $U_q(\mathfrak{sl}_2)$.J. Math. Phys. 58 (4) (2017), 13 pp., Paper No. 041702. MR 3632540
Reference: [12] Parthasarathy, R.: Dirac operator and the discrete series.Ann. of Math. 96 (1972), 1–30. MR 0318398, 10.2307/1970892
Reference: [13] Vogan, D.: Dirac operators and unitary representations.3 talks at MIT Lie groups seminar, Fall 1997.
.

Files

Files Size Format View
ArchMathRetro_060-2024-5_5.pdf 487.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo