[3] Atangana, A., Gómez-Aguilar, J. F.:
Decolonisation of fractional calculus rules: Breaking commutativity and associativity to capture more natural phenomena. Eur. Phys. J. Plus 133 (2018), Article ID 133, 22 pages.
DOI 10.1140/epjp/i2018-12021-3
[4] Atangana, A., Gómez-Aguilar, J. F.:
Numerical approximation of Riemann-Liouville definition of fractional derivative: From Riemann-Liouville to Atangana-Baleanu. Numer. Methods Partial Differ. Equations 34 (2018), 1502-1523.
DOI 10.1002/num.22195 |
MR 3843531 |
Zbl 1417.65113
[6] Baleanu, D., Diethelm, K., Scalas, E., Trujillo, J. J.:
Fractional Calculus: Models and Numerical Methods. Series on Complexity, Nonlinearity and Chaos 3. World Scientific, Hackensack (2012).
DOI 10.1142/10044 |
MR 2894576 |
Zbl 1248.26011
[8] Bongiorno, B.:
Relatively weakly compact sets in the Denjoy space. J. Math. Study 27 (1994), 37-44.
MR 1318256 |
Zbl 1045.26502
[15] Diethelm, K.:
The Analysis of Fractional Differential Equations: An Application-Oriented Exposition Using Differential Operators of Caputo Type. Lecture Notes in Mathematics 2004. Springer, Berlin (2010).
DOI 10.1007/978-3-642-14574-2 |
MR 2680847 |
Zbl 1215.34001
[16] Diethelm, K., Freed, A. D.:
On the solution of nonlinear fractional-order differential equations used in the modeling of viscoplasticity. Scientific Computing in Chemical Engineering II Springer, Berlin (1999).
DOI 10.1007/978-3-642-60185-9_24
[18] Gómez-Aguilar, J. F., Atangana, A.:
New insight in fractional differentiation: Power, exponential decay and Mittag-Leffler laws and applications. Eur. Phys. J. Plus 132 (2017), Article ID 13, 21 pages.
DOI 10.1140/epjp/i2017-11293-3
[20] Hayek, N., Trujillo, J., Rivero, M., Bonilla, B., Moreno, J. C.:
An extension of Picard-Lindelöff theorem to fractional differential equations. Appl. Anal. 70 (1999), 347-361.
DOI 10.1080/00036819808840696 |
MR 1688864 |
Zbl 1030.34003
[26] Mainardi, F.:
Fractional calculus: Some basic problems in continuum and statistical mechanics. Fractals and Fractional Calculus in Continuum Mechanics CISM Courses and Lectures 378. Springer, Vienna (1997), 291-348.
DOI 10.1007/978-3-7091-2664-6_7 |
MR 1611587
[27] Miller, K. S., Ross, B.:
An Introduction to the Fractional Calculus and Fractional Differential Equations. John Wiley & Sons, New York (1993).
MR 1219954 |
Zbl 0789.26002
[29] Monteiro, G. A., Slavík, A., Tvrdý, M.:
Kurzweil-Stieltjes Integral: Theory and Applications. Series in Real Analysis 15. World Scientific, Singapore (2019).
DOI 10.1142/9432 |
MR 3839599 |
Zbl 1437.28001
[36] Salem, A. H. H., Cichoń, M.:
On solutions of fractional order boundary value problems with integral boundary conditions in Banach spaces. J. Funct. Spaces Appl. 2013 (2013), Article ID 428094, 13 pages.
DOI 10.1155/2013/428094 |
MR 3071357 |
Zbl 1272.34010
[37] Samko, S. G., Kilbas, A. A., Marichev, O. I.:
Fractional Integrals and Derivatives: Theory and Applications. Gordon and Breach, New York (1993).
MR 1347689 |
Zbl 0818.26003
[40] Smart, D. R.:
Fixed Point Theorems. Cambridge Tracts in Mathematics 66. Cambridge University Press, Cambridge (1980).
MR 0467717 |
Zbl 0427.47036
[43] Xu, Y. T.: Functional Differential Equations and Measure Differential Equations. Zhongshan University Press, Guangzhou (1988), Chinese.
[46] Ye, G., Zhang, M., Liu, E., Zhao, D.:
Existence and uniqueness of solutions to distributional differential equations involving Henstock-Kurzweil-Stieltjes integrals. Rev. Unión Mat. Argent. 60 (2019), 443-458.
DOI 10.33044/revuma.v60n2a11 |
MR 4049796 |
Zbl 1432.34005
[47] Zhou, H., Ye, G., Liu, W., Wang, O.:
The distributional Henstock-Kurzweil integral and measure differential equations. Bull. Iran. Math. Soc. 41 (2015), 363-374.
MR 3345524 |
Zbl 1373.26008