Title:
|
Cauchy problem with Denjoy-Stieltjes integral (English) |
Author:
|
Morales Macías, María Guadalupe |
Language:
|
English |
Journal:
|
Mathematica Bohemica |
ISSN:
|
0862-7959 (print) |
ISSN:
|
2464-7136 (online) |
Volume:
|
149 |
Issue:
|
4 |
Year:
|
2024 |
Pages:
|
471-490 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
This work is devoted to analyzing the existence of the Cauchy fractional-type problems considering the Riemann-Liouville derivative (in the distributional Denjoy integral sense) of real order $n\geq 1$. These kinds of equations are a generalization of the measure differential equations. Our results extend A. A. Kilbas, H. M. Srivastava, J. J. Trujillo (2006) and H. Zhou, G. Ye, W. Liu, O. Wang (2015). (English) |
Keyword:
|
fractional measure differential equation |
Keyword:
|
Cauchy problem |
Keyword:
|
Riemann-Liouville fractional integral and derivative |
Keyword:
|
distributional Denjoy integral |
MSC:
|
26A39 |
MSC:
|
26A42 |
MSC:
|
34A08 |
MSC:
|
34A12 |
DOI:
|
10.21136/MB.2024.0072-22 |
. |
Date available:
|
2024-12-13T19:04:23Z |
Last updated:
|
2024-12-13 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/152675 |
. |
Reference:
|
[1] Ang, D. D., Schmitt, K., Vy, L. K.: A multidimensional analogue of the Denjoy-Perron-Henstock-Kurzweil integral.Bull. Belg. Math. Soc. - Simon Stevin 4 (1997), 355-371. Zbl 0929.26009, MR 1457075, 10.36045/bbms/1105733252 |
Reference:
|
[2] Atangana, A.: Non validity of index law in fractional calculus: A fractional differential operator with Markovian and non-Markovian properties.Physica A 505 (2018), 688-706. Zbl 07550314, MR 3807252, 10.1016/j.physa.2018.03.056 |
Reference:
|
[3] Atangana, A., Gómez-Aguilar, J. F.: Decolonisation of fractional calculus rules: Breaking commutativity and associativity to capture more natural phenomena.Eur. Phys. J. Plus 133 (2018), Article ID 133, 22 pages. 10.1140/epjp/i2018-12021-3 |
Reference:
|
[4] Atangana, A., Gómez-Aguilar, J. F.: Numerical approximation of Riemann-Liouville definition of fractional derivative: From Riemann-Liouville to Atangana-Baleanu.Numer. Methods Partial Differ. Equations 34 (2018), 1502-1523. Zbl 1417.65113, MR 3843531, 10.1002/num.22195 |
Reference:
|
[5] Atangana, A., Qureshi, S.: Modeling attractors of chaotic dynamical systems with fractal-fractional operators.Chaos Solitons Fractals 123 (2019), 320-337. Zbl 1448.65268, MR 3941450, 10.1016/j.chaos.2019.04.020 |
Reference:
|
[6] Baleanu, D., Diethelm, K., Scalas, E., Trujillo, J. J.: Fractional Calculus: Models and Numerical Methods.Series on Complexity, Nonlinearity and Chaos 3. World Scientific, Hackensack (2012). Zbl 1248.26011, MR 2894576, 10.1142/10044 |
Reference:
|
[7] Barrett, J. H.: Differential equations of non-integer order.Can. J. Math. 6 (1954), 529-541. Zbl 0058.10702, MR 0064936, 10.4153/CJM-1954-058-2 |
Reference:
|
[8] Bongiorno, B.: Relatively weakly compact sets in the Denjoy space.J. Math. Study 27 (1994), 37-44. Zbl 1045.26502, MR 1318256 |
Reference:
|
[9] Bongiorno, B., Panchapagesan, T. V.: On the Alexiewicz topology of the Denjoy space.Real Anal. Exch. 21 (1995/96), 604-614. Zbl 0879.26028, MR 1407272, 10.2307/44152670 |
Reference:
|
[10] Bonotto, E. M., Federson, M., Muldowney, P.: A Feynman-Kac solution to a random impulsive equation of Schrödinger type.Real Anal. Exch. 36 (2010/11), 107-148. Zbl 1246.28008, MR 3016407, 10.14321/realanalexch.36.1.0107 |
Reference:
|
[11] Carothers, N. L.: Real Analysis.Cambridge University Press, Cambridge (2000). Zbl 0997.26003, MR 1772332, 10.1017/CBO9780511814228 |
Reference:
|
[12] Chew, T. S., Flordeliza, F.: On $x'=f(t,x)$ and Henstock-Kurzweil integrals.Differ. Integral Equ. 4 (1991), 861-868. Zbl 0733.34004, MR 1108065, 10.57262/die/1371225020 |
Reference:
|
[13] Das, P. C., Sharma, R. R.: On optimal controls for measure delay-differential equations.SIAM. J. Control 9 (1971), 43-61. Zbl 0283.49003, MR 0274898, 10.1137/0309005 |
Reference:
|
[14] Das, P. C., Sharma, R. R.: Existence and stability of measure differential equations.Czech. Math. J. 22 (1972), 145-158. Zbl 0241.34070, MR 0304815, 10.21136/CMJ.1972.101082 |
Reference:
|
[15] Diethelm, K.: The Analysis of Fractional Differential Equations: An Application-Oriented Exposition Using Differential Operators of Caputo Type.Lecture Notes in Mathematics 2004. Springer, Berlin (2010). Zbl 1215.34001, MR 2680847, 10.1007/978-3-642-14574-2 |
Reference:
|
[16] Diethelm, K., Freed, A. D.: On the solution of nonlinear fractional-order differential equations used in the modeling of viscoplasticity.Scientific Computing in Chemical Engineering II Springer, Berlin (1999). 10.1007/978-3-642-60185-9_24 |
Reference:
|
[17] Duistermaat, J. J., Kolk, J. A. C.: Distributions: Theory and Applications.Cornerstones. Birkhäuser, Boston (2010). Zbl 1213.46001, MR 2680692, 10.1007/978-0-8176-4675-2 |
Reference:
|
[18] Gómez-Aguilar, J. F., Atangana, A.: New insight in fractional differentiation: Power, exponential decay and Mittag-Leffler laws and applications.Eur. Phys. J. Plus 132 (2017), Article ID 13, 21 pages. 10.1140/epjp/i2017-11293-3 |
Reference:
|
[19] Gordon, R. A.: The Integrals of Lebesgue, Denjoy, Perron, and Henstock.Graduate Studies in Mathematics 4. AMS, Providence (1994). Zbl 0807.26004, MR 1288751, 10.1090/gsm/004 |
Reference:
|
[20] Hayek, N., Trujillo, J., Rivero, M., Bonilla, B., Moreno, J. C.: An extension of Picard-Lindelöff theorem to fractional differential equations.Appl. Anal. 70 (1999), 347-361. Zbl 1030.34003, MR 1688864, 10.1080/00036819808840696 |
Reference:
|
[21] (ed.), R. Hilfer: Applications of Fractional Calculus in Physics.World Scientific, Singapore (2000). Zbl 0998.26002, MR 1890104, 10.1142/3779 |
Reference:
|
[22] Hörmander, L.: The Analysis of Linear Partial Differential Operators I. Distribution Theory and Fourier Analysis.Grundlehren der Mathematischen Wissenschaften 256. Springer, Berlin (1990). Zbl 0712.35001, MR 1996773, 10.1007/978-3-642-96750-4 |
Reference:
|
[23] Kilbas, A. A., Bonilla, B., Trujillo, J. J.: Existence and uniqueness theorems for nonlinear fractional differential equations.Demonstr. Math. 33 (2000), 583-602. Zbl 0964.34004, MR 1791723, 10.1515/dema-2000-0315 |
Reference:
|
[24] Kilbas, A. A., Srivastava, H. M., Trujillo, J. J.: Theory and Applications of Fractional Differential Equations.North-Holland Mathematics Studies 204. Elsevier, Amsterdam (2006). Zbl 1092.45003, MR 2218073, 10.1016/s0304-0208(06)x8001-5 |
Reference:
|
[25] Krejčí, P., Lamba, H., Monteiro, G. A., Rachinskii, D.: The Kurzweil integral in financial market modeling.Math. Bohem. 141 (2016), 261-286. Zbl 1389.34140, MR 3499787, 10.21136/MB.2016.18 |
Reference:
|
[26] Mainardi, F.: Fractional calculus: Some basic problems in continuum and statistical mechanics.Fractals and Fractional Calculus in Continuum Mechanics CISM Courses and Lectures 378. Springer, Vienna (1997), 291-348. MR 1611587, 10.1007/978-3-7091-2664-6_7 |
Reference:
|
[27] Miller, K. S., Ross, B.: An Introduction to the Fractional Calculus and Fractional Differential Equations.John Wiley & Sons, New York (1993). Zbl 0789.26002, MR 1219954 |
Reference:
|
[28] Monteiro, G. A., Satco, B.: Distributional, differential and integral problems: Equivalence and existence results.Electron. J. Qual. Theory Differ. Equ. 2017 (2017), Article ID 7, 26 pages. Zbl 1413.34062, MR 3606985, 10.14232/ejqtde.2017.1.7 |
Reference:
|
[29] Monteiro, G. A., Slavík, A., Tvrdý, M.: Kurzweil-Stieltjes Integral: Theory and Applications.Series in Real Analysis 15. World Scientific, Singapore (2019). Zbl 1437.28001, MR 3839599, 10.1142/9432 |
Reference:
|
[30] Morales, M. G., Došlá, Z.: Weighted Cauchy problem: Fractional versus integer order.J. Integral Equations Appl. 33 (2021), 497-509. Zbl 1510.34021, MR 4393381, 10.1216/jie.2021.33.497 |
Reference:
|
[31] Morales, M. G., Došlá, Z., Mendoza, F. J.: Riemann-Liouville derivative over the space of integrable distributions.Electron Res. Arch. 28 (2020), 567-587. Zbl 07220320, MR 4097636, 10.3934/era.2020030 |
Reference:
|
[32] Morita, T., Sato, K.: Solution of fractional differential equation in terms of distribution theory.Interdiscip. Inf. Sci. 12 (2006), 71-83. Zbl 1121.34003, MR 2267319, 10.4036/iis.2006.71 |
Reference:
|
[33] Muldowney, P.: Feynman's path integrals and Henstock's non-absolute integration.J. Appl. Anal. 6 (2000), 1-24. Zbl 0963.28012, MR 1758185, 10.1515/JAA.2000.1 |
Reference:
|
[34] Pskhu, A. V.: Initial-value problem for a linear ordinary differential equation of noninteger order.Sb. Math. 202 (2011), 571-582. Zbl 1226.34005, MR 2830238, 10.1070/SM2011v202n04ABEH004156 |
Reference:
|
[35] Sabatier, J., Agrawal, O. P., (eds.), J. A. T. Machado: Advances in Fractional Calculus: Theoretical Developments and Applications in Physics and Engineering.Springer, Dordrecht (2007). Zbl 1116.00014, MR 2432163, 10.1007/978-1-4020-6042-7 |
Reference:
|
[36] Salem, A. H. H., Cichoń, M.: On solutions of fractional order boundary value problems with integral boundary conditions in Banach spaces.J. Funct. Spaces Appl. 2013 (2013), Article ID 428094, 13 pages. Zbl 1272.34010, MR 3071357, 10.1155/2013/428094 |
Reference:
|
[37] Samko, S. G., Kilbas, A. A., Marichev, O. I.: Fractional Integrals and Derivatives: Theory and Applications.Gordon and Breach, New York (1993). Zbl 0818.26003, MR 1347689 |
Reference:
|
[38] Schmaedeke, W. W.: Optimal control theory for nonlinear vector differential equations containing measures.J. SIAM Control, Ser. A 3 (1965), 231-280. Zbl 0161.29203, MR 0189870, 10.1137/0303019 |
Reference:
|
[39] Schwabik, Š.: Generalized Ordinary Differential Equations.Series in Real Analysis 5. World Scientific, Singapore (1992). Zbl 0781.34003, MR 1200241, 10.1142/1875 |
Reference:
|
[40] Smart, D. R.: Fixed Point Theorems.Cambridge Tracts in Mathematics 66. Cambridge University Press, Cambridge (1980). Zbl 0427.47036, MR 0467717 |
Reference:
|
[41] Talvila, E.: The distributional Denjoy integral.Real Anal. Exch. 33 (2007/08), 51-82. Zbl 1154.26011, MR 2402863, 10.14321/realanalexch.33.1.0051 |
Reference:
|
[42] Talvila, E.: Convolutions with the continuous primitive integral.Abstr. Appl. Anal. 2009 (2009), Article ID 307404, 18 pages. Zbl 1192.46039, MR 2559282, 10.1155/2009/307404 |
Reference:
|
[43] Xu, Y. T.: Functional Differential Equations and Measure Differential Equations.Zhongshan University Press, Guangzhou (1988), Chinese. |
Reference:
|
[44] Ye, G., Liu, W.: The distributional Henstock-Kurzweil integral and applications.Monatsh. Math. 181 (2016), 975-989. Zbl 1362.45009, MR 3563309, 10.1007/s00605-015-0853-1 |
Reference:
|
[45] Ye, G., Liu, W.: The distributional Henstock-Kurzweil integral and applications: A survey.J. Math. Study 49 (2016), 433-448. Zbl 1374.26021, MR 3592995, 10.4208/jms.v49n4.16.06 |
Reference:
|
[46] Ye, G., Zhang, M., Liu, E., Zhao, D.: Existence and uniqueness of solutions to distributional differential equations involving Henstock-Kurzweil-Stieltjes integrals.Rev. Unión Mat. Argent. 60 (2019), 443-458. Zbl 1432.34005, MR 4049796, 10.33044/revuma.v60n2a11 |
Reference:
|
[47] Zhou, H., Ye, G., Liu, W., Wang, O.: The distributional Henstock-Kurzweil integral and measure differential equations.Bull. Iran. Math. Soc. 41 (2015), 363-374. Zbl 1373.26008, MR 3345524 |
. |