Previous |  Up |  Next

Article

Title: Cauchy problem with Denjoy-Stieltjes integral (English)
Author: Morales Macías, María Guadalupe
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 149
Issue: 4
Year: 2024
Pages: 471-490
Summary lang: English
.
Category: math
.
Summary: This work is devoted to analyzing the existence of the Cauchy fractional-type problems considering the Riemann-Liouville derivative (in the distributional Denjoy integral sense) of real order $n\geq 1$. These kinds of equations are a generalization of the measure differential equations. Our results extend A. A. Kilbas, H. M. Srivastava, J. J. Trujillo (2006) and H. Zhou, G. Ye, W. Liu, O. Wang (2015). (English)
Keyword: fractional measure differential equation
Keyword: Cauchy problem
Keyword: Riemann-Liouville fractional integral and derivative
Keyword: distributional Denjoy integral
MSC: 26A39
MSC: 26A42
MSC: 34A08
MSC: 34A12
DOI: 10.21136/MB.2024.0072-22
.
Date available: 2024-12-13T19:04:23Z
Last updated: 2024-12-13
Stable URL: http://hdl.handle.net/10338.dmlcz/152675
.
Reference: [1] Ang, D. D., Schmitt, K., Vy, L. K.: A multidimensional analogue of the Denjoy-Perron-Henstock-Kurzweil integral.Bull. Belg. Math. Soc. - Simon Stevin 4 (1997), 355-371. Zbl 0929.26009, MR 1457075, 10.36045/bbms/1105733252
Reference: [2] Atangana, A.: Non validity of index law in fractional calculus: A fractional differential operator with Markovian and non-Markovian properties.Physica A 505 (2018), 688-706. Zbl 07550314, MR 3807252, 10.1016/j.physa.2018.03.056
Reference: [3] Atangana, A., Gómez-Aguilar, J. F.: Decolonisation of fractional calculus rules: Breaking commutativity and associativity to capture more natural phenomena.Eur. Phys. J. Plus 133 (2018), Article ID 133, 22 pages. 10.1140/epjp/i2018-12021-3
Reference: [4] Atangana, A., Gómez-Aguilar, J. F.: Numerical approximation of Riemann-Liouville definition of fractional derivative: From Riemann-Liouville to Atangana-Baleanu.Numer. Methods Partial Differ. Equations 34 (2018), 1502-1523. Zbl 1417.65113, MR 3843531, 10.1002/num.22195
Reference: [5] Atangana, A., Qureshi, S.: Modeling attractors of chaotic dynamical systems with fractal-fractional operators.Chaos Solitons Fractals 123 (2019), 320-337. Zbl 1448.65268, MR 3941450, 10.1016/j.chaos.2019.04.020
Reference: [6] Baleanu, D., Diethelm, K., Scalas, E., Trujillo, J. J.: Fractional Calculus: Models and Numerical Methods.Series on Complexity, Nonlinearity and Chaos 3. World Scientific, Hackensack (2012). Zbl 1248.26011, MR 2894576, 10.1142/10044
Reference: [7] Barrett, J. H.: Differential equations of non-integer order.Can. J. Math. 6 (1954), 529-541. Zbl 0058.10702, MR 0064936, 10.4153/CJM-1954-058-2
Reference: [8] Bongiorno, B.: Relatively weakly compact sets in the Denjoy space.J. Math. Study 27 (1994), 37-44. Zbl 1045.26502, MR 1318256
Reference: [9] Bongiorno, B., Panchapagesan, T. V.: On the Alexiewicz topology of the Denjoy space.Real Anal. Exch. 21 (1995/96), 604-614. Zbl 0879.26028, MR 1407272, 10.2307/44152670
Reference: [10] Bonotto, E. M., Federson, M., Muldowney, P.: A Feynman-Kac solution to a random impulsive equation of Schrödinger type.Real Anal. Exch. 36 (2010/11), 107-148. Zbl 1246.28008, MR 3016407, 10.14321/realanalexch.36.1.0107
Reference: [11] Carothers, N. L.: Real Analysis.Cambridge University Press, Cambridge (2000). Zbl 0997.26003, MR 1772332, 10.1017/CBO9780511814228
Reference: [12] Chew, T. S., Flordeliza, F.: On $x'=f(t,x)$ and Henstock-Kurzweil integrals.Differ. Integral Equ. 4 (1991), 861-868. Zbl 0733.34004, MR 1108065, 10.57262/die/1371225020
Reference: [13] Das, P. C., Sharma, R. R.: On optimal controls for measure delay-differential equations.SIAM. J. Control 9 (1971), 43-61. Zbl 0283.49003, MR 0274898, 10.1137/0309005
Reference: [14] Das, P. C., Sharma, R. R.: Existence and stability of measure differential equations.Czech. Math. J. 22 (1972), 145-158. Zbl 0241.34070, MR 0304815, 10.21136/CMJ.1972.101082
Reference: [15] Diethelm, K.: The Analysis of Fractional Differential Equations: An Application-Oriented Exposition Using Differential Operators of Caputo Type.Lecture Notes in Mathematics 2004. Springer, Berlin (2010). Zbl 1215.34001, MR 2680847, 10.1007/978-3-642-14574-2
Reference: [16] Diethelm, K., Freed, A. D.: On the solution of nonlinear fractional-order differential equations used in the modeling of viscoplasticity.Scientific Computing in Chemical Engineering II Springer, Berlin (1999). 10.1007/978-3-642-60185-9_24
Reference: [17] Duistermaat, J. J., Kolk, J. A. C.: Distributions: Theory and Applications.Cornerstones. Birkhäuser, Boston (2010). Zbl 1213.46001, MR 2680692, 10.1007/978-0-8176-4675-2
Reference: [18] Gómez-Aguilar, J. F., Atangana, A.: New insight in fractional differentiation: Power, exponential decay and Mittag-Leffler laws and applications.Eur. Phys. J. Plus 132 (2017), Article ID 13, 21 pages. 10.1140/epjp/i2017-11293-3
Reference: [19] Gordon, R. A.: The Integrals of Lebesgue, Denjoy, Perron, and Henstock.Graduate Studies in Mathematics 4. AMS, Providence (1994). Zbl 0807.26004, MR 1288751, 10.1090/gsm/004
Reference: [20] Hayek, N., Trujillo, J., Rivero, M., Bonilla, B., Moreno, J. C.: An extension of Picard-Lindelöff theorem to fractional differential equations.Appl. Anal. 70 (1999), 347-361. Zbl 1030.34003, MR 1688864, 10.1080/00036819808840696
Reference: [21] (ed.), R. Hilfer: Applications of Fractional Calculus in Physics.World Scientific, Singapore (2000). Zbl 0998.26002, MR 1890104, 10.1142/3779
Reference: [22] Hörmander, L.: The Analysis of Linear Partial Differential Operators I. Distribution Theory and Fourier Analysis.Grundlehren der Mathematischen Wissenschaften 256. Springer, Berlin (1990). Zbl 0712.35001, MR 1996773, 10.1007/978-3-642-96750-4
Reference: [23] Kilbas, A. A., Bonilla, B., Trujillo, J. J.: Existence and uniqueness theorems for nonlinear fractional differential equations.Demonstr. Math. 33 (2000), 583-602. Zbl 0964.34004, MR 1791723, 10.1515/dema-2000-0315
Reference: [24] Kilbas, A. A., Srivastava, H. M., Trujillo, J. J.: Theory and Applications of Fractional Differential Equations.North-Holland Mathematics Studies 204. Elsevier, Amsterdam (2006). Zbl 1092.45003, MR 2218073, 10.1016/s0304-0208(06)x8001-5
Reference: [25] Krejčí, P., Lamba, H., Monteiro, G. A., Rachinskii, D.: The Kurzweil integral in financial market modeling.Math. Bohem. 141 (2016), 261-286. Zbl 1389.34140, MR 3499787, 10.21136/MB.2016.18
Reference: [26] Mainardi, F.: Fractional calculus: Some basic problems in continuum and statistical mechanics.Fractals and Fractional Calculus in Continuum Mechanics CISM Courses and Lectures 378. Springer, Vienna (1997), 291-348. MR 1611587, 10.1007/978-3-7091-2664-6_7
Reference: [27] Miller, K. S., Ross, B.: An Introduction to the Fractional Calculus and Fractional Differential Equations.John Wiley & Sons, New York (1993). Zbl 0789.26002, MR 1219954
Reference: [28] Monteiro, G. A., Satco, B.: Distributional, differential and integral problems: Equivalence and existence results.Electron. J. Qual. Theory Differ. Equ. 2017 (2017), Article ID 7, 26 pages. Zbl 1413.34062, MR 3606985, 10.14232/ejqtde.2017.1.7
Reference: [29] Monteiro, G. A., Slavík, A., Tvrdý, M.: Kurzweil-Stieltjes Integral: Theory and Applications.Series in Real Analysis 15. World Scientific, Singapore (2019). Zbl 1437.28001, MR 3839599, 10.1142/9432
Reference: [30] Morales, M. G., Došlá, Z.: Weighted Cauchy problem: Fractional versus integer order.J. Integral Equations Appl. 33 (2021), 497-509. Zbl 1510.34021, MR 4393381, 10.1216/jie.2021.33.497
Reference: [31] Morales, M. G., Došlá, Z., Mendoza, F. J.: Riemann-Liouville derivative over the space of integrable distributions.Electron Res. Arch. 28 (2020), 567-587. Zbl 07220320, MR 4097636, 10.3934/era.2020030
Reference: [32] Morita, T., Sato, K.: Solution of fractional differential equation in terms of distribution theory.Interdiscip. Inf. Sci. 12 (2006), 71-83. Zbl 1121.34003, MR 2267319, 10.4036/iis.2006.71
Reference: [33] Muldowney, P.: Feynman's path integrals and Henstock's non-absolute integration.J. Appl. Anal. 6 (2000), 1-24. Zbl 0963.28012, MR 1758185, 10.1515/JAA.2000.1
Reference: [34] Pskhu, A. V.: Initial-value problem for a linear ordinary differential equation of noninteger order.Sb. Math. 202 (2011), 571-582. Zbl 1226.34005, MR 2830238, 10.1070/SM2011v202n04ABEH004156
Reference: [35] Sabatier, J., Agrawal, O. P., (eds.), J. A. T. Machado: Advances in Fractional Calculus: Theoretical Developments and Applications in Physics and Engineering.Springer, Dordrecht (2007). Zbl 1116.00014, MR 2432163, 10.1007/978-1-4020-6042-7
Reference: [36] Salem, A. H. H., Cichoń, M.: On solutions of fractional order boundary value problems with integral boundary conditions in Banach spaces.J. Funct. Spaces Appl. 2013 (2013), Article ID 428094, 13 pages. Zbl 1272.34010, MR 3071357, 10.1155/2013/428094
Reference: [37] Samko, S. G., Kilbas, A. A., Marichev, O. I.: Fractional Integrals and Derivatives: Theory and Applications.Gordon and Breach, New York (1993). Zbl 0818.26003, MR 1347689
Reference: [38] Schmaedeke, W. W.: Optimal control theory for nonlinear vector differential equations containing measures.J. SIAM Control, Ser. A 3 (1965), 231-280. Zbl 0161.29203, MR 0189870, 10.1137/0303019
Reference: [39] Schwabik, Š.: Generalized Ordinary Differential Equations.Series in Real Analysis 5. World Scientific, Singapore (1992). Zbl 0781.34003, MR 1200241, 10.1142/1875
Reference: [40] Smart, D. R.: Fixed Point Theorems.Cambridge Tracts in Mathematics 66. Cambridge University Press, Cambridge (1980). Zbl 0427.47036, MR 0467717
Reference: [41] Talvila, E.: The distributional Denjoy integral.Real Anal. Exch. 33 (2007/08), 51-82. Zbl 1154.26011, MR 2402863, 10.14321/realanalexch.33.1.0051
Reference: [42] Talvila, E.: Convolutions with the continuous primitive integral.Abstr. Appl. Anal. 2009 (2009), Article ID 307404, 18 pages. Zbl 1192.46039, MR 2559282, 10.1155/2009/307404
Reference: [43] Xu, Y. T.: Functional Differential Equations and Measure Differential Equations.Zhongshan University Press, Guangzhou (1988), Chinese.
Reference: [44] Ye, G., Liu, W.: The distributional Henstock-Kurzweil integral and applications.Monatsh. Math. 181 (2016), 975-989. Zbl 1362.45009, MR 3563309, 10.1007/s00605-015-0853-1
Reference: [45] Ye, G., Liu, W.: The distributional Henstock-Kurzweil integral and applications: A survey.J. Math. Study 49 (2016), 433-448. Zbl 1374.26021, MR 3592995, 10.4208/jms.v49n4.16.06
Reference: [46] Ye, G., Zhang, M., Liu, E., Zhao, D.: Existence and uniqueness of solutions to distributional differential equations involving Henstock-Kurzweil-Stieltjes integrals.Rev. Unión Mat. Argent. 60 (2019), 443-458. Zbl 1432.34005, MR 4049796, 10.33044/revuma.v60n2a11
Reference: [47] Zhou, H., Ye, G., Liu, W., Wang, O.: The distributional Henstock-Kurzweil integral and measure differential equations.Bull. Iran. Math. Soc. 41 (2015), 363-374. Zbl 1373.26008, MR 3345524
.

Files

Files Size Format View
MathBohem_149-2024-4_2.pdf 314.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo