Previous |  Up |  Next

Article

Title: Reducing the lengths of slim planar semimodular lattices without changing their congruence lattices (English)
Author: Czédli, Gábor
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 149
Issue: 4
Year: 2024
Pages: 503-532
Summary lang: English
.
Category: math
.
Summary: Following G. Grätzer and E. Knapp (2007), a slim planar semimodular lattice, SPS lattice for short, is a finite planar semimodular lattice having no $M_3$ as a sublattice. An SPS lattice is a slim rectangular lattice if it has exactly two doubly irreducible elements and these two elements are complements of each other. A finite poset $P$ is said to be JConSPS-representable if there is an SPS lattice $L$ such that $P$ is isomorphic to the poset ${\rm J}({\rm Con} L)$ of join-irreducible congruences of $L$. We prove that if $1<n\in \mathbb N$ and $P$ is an $n$-element JConSPS-representable poset, then there exists a slim rectangular lattice $L$ such that ${\rm J}({\rm Con} L)\cong P$, the length of $L$ is at most $2n^2$, and $|L|\leq 4n^4$. This offers an algorithm to decide whether a finite poset $P$ is JConSPS-representable (or a finite distributive lattice is ``ConSPS-representable''). This algorithm is slow as G. Czédli, T. Dékány, G. Gyenizse, and J. Kulin proved in 2016 that there are asymptotically $\frac 12(k-2)! {\rm e}^2$ slim rectangular lattices of a given length $k$, where ${\rm e}$ is the famous constant $\approx 2.71828$. The known properties and constructions of JConSPS-representable posets can accelerate the algorithm; we present a new construction. (English)
Keyword: slim rectangular lattice
Keyword: slim semimodular lattice
Keyword: planar semimodular lattice
Keyword: congruence lattice
Keyword: lattice congruence
Keyword: lamp
Keyword: $\mathcal C_1$-diagram
MSC: 06C10
DOI: 10.21136/MB.2024.0006-23
.
Date available: 2024-12-13T19:05:27Z
Last updated: 2024-12-13
Stable URL: http://hdl.handle.net/10338.dmlcz/152677
.
Reference: [1] Adaricheva, K., Czédli, G.: Note on the description of join-distributive lattices by permutations.Algebra Univers. 72 (2014), 155-162. Zbl 1301.06024, MR 3257652, 10.1007/s00012-014-0295-y
Reference: [2] Ahmed, D., Horváth, E. K.: Yet two additional large numbers of subuniverses of finite lattices.Discuss. Math., Gen. Algebra Appl. 39 (2019), 251-261. Zbl 1463.06014, MR 4020360, 10.7151/dmgaa.1309
Reference: [3] Czédli, G.: Representing homomorphisms of distributive lattices as restrictions of congruences of rectangular lattices.Algebra Univers. 67 (2012), 313-345. Zbl 1269.06004, MR 2970728, 10.1007/s00012-012-0190-3
Reference: [4] Czédli, G.: Coordinatization of finite join-distributive lattices.Algebra Univers. 71 (2014), 385-404. Zbl 1302.06011, MR 3207613, 10.1007/s00012-014-0282-3
Reference: [5] Czédli, G.: Patch extensions and trajectory colorings of slim rectangular lattices.Algebra Univers. 72 (2014), 125-154. Zbl 1312.06005, MR 3257651, 10.1007/s00012-014-0294-z
Reference: [6] Czédli, G.: Diagrams and rectangular extensions of planar semimodular lattices.Algebra Univers. 77 (2017), 443-498. Zbl 1380.06006, MR 3662480, 10.1007/s00012-017-0437-0
Reference: [7] Czédli, G.: Lamps in slim rectangular planar semimodular lattices.Acta Sci. Math. 87 (2021), 381-413. Zbl 1499.06025, MR 4333915, 10.14232/actasm-021-865-y
Reference: [8] Czédli, G.: A property of meets in slim semimodular lattices and its application to retracts.Acta Sci. Math. 88 (2022), 595-610. Zbl 7672122, MR 4536393, 10.1007/s44146-022-00040-z
Reference: [9] Czédli, G.: Cyclic congruences of slim semimodular lattices and non-finite axiomatizability of some finite structures.Arch. Math., Brno 58 (2022), 15-33. Zbl 7511505, MR 4412964, 10.5817/AM2022-1-15
Reference: [10] Czédli, G.: $C_1$-diagrams of slim rectangular semimodular lattices permit quotient diagrams.(to appear) in Acta Sci. Math. MR 4744717, 10.1007/s44146-023-00101-x
Reference: [11] Czédli, G.: Infinitely many new properties of the congruence lattices of slim semimodular lattices.Acta. Sci. Math. 89 (2023), 319-337. MR 4671397, 10.1007/s44146-023-00069-8
Reference: [12] Czédli, G., Dékány, T., Gyenizse, G., Kulin, J.: The number of slim rectangular lattices.Algebra Univers. 75 (2016), 33-50. Zbl 1345.06005, MR 3519569, 10.1007/s00012-015-0363-y
Reference: [13] Czédli, G., Grätzer, G.: A new property of congruence lattices of slim, planar, semimodular lattices.Categ. Gen. Algebr. Struct. Appl. 16 (2022), 1-28. Zbl 1497.06008, MR 4399396
Reference: [14] Czédli, G., Kurusa, Á.: A convex combinatorial property of compact sets in the plane and its roots in lattice theory.Categ. Gen. Algebr. Struct. Appl. 11 (2019), 57-92. Zbl 1428.52002, MR 3988338, 10.29252/CGASA.11.1.57
Reference: [15] Czédli, G., Schmidt, E. T.: Frankl's conjecture for large semimodular and planar semimodular lattices.Acta Univ. Palacki. Olomuc., Fac. Rerum Nat., Math. 47 (2008), 47-53. Zbl 1187.05002, MR 2482716
Reference: [16] Czédli, G., Schmidt, E. T.: The Jordan-Hölder theorem with uniqueness for groups and semimodular lattices.Algebra Univers. 66 (2011), 69-79. Zbl 1233.06006, MR 2844921, 10.1007/s00012-011-0144-1
Reference: [17] Czédli, G., Schmidt, E. T.: Slim semimodular lattices. I. A visual approach.Order 29 (2012), 481-497. Zbl 1257.06005, MR 2979644, 10.1007/s11083-011-9215-3
Reference: [18] Grätzer, G.: Congruences of fork extensions of slim, planar, semimodular lattices.Algebra Univers. 76 (2016), 139-154. Zbl 1370.06004, MR 3551218, 10.1007/s00012-016-0394-z
Reference: [19] Grätzer, G.: Notes on planar semimodular lattices. VIII. Congruence lattices of SPS lattices.Algebra Univers. 81 (2020), Article ID 15, 3 pages. Zbl 1477.06024, MR 4067804, 10.1007/s00012-020-0641-1
Reference: [20] Grätzer, G., Knapp, E.: Notes on planar semimodular lattices. I. Construction.Acta Sci. Math. 73 (2007), 445-462. Zbl 1223.06007, MR 2380059
Reference: [21] Grätzer, G., Knapp, E.: Notes on planar semimodular lattices. III. Rectangular lattices.Acta Sci. Math. 75 (2009), 29-48. Zbl 1199.06029, MR 2533398
Reference: [22] Grätzer, G., Lakser, H., Schmidt, E. T.: Congruence lattices of finite semimodular lattices.Can. Math. Bull. 41 (1998), 290-297. Zbl 0918.06004, MR 1637653, 10.4153/CMB-1998-041-7
Reference: [23] Kelly, D., Rival, I.: Planar lattices.Can. J. Math. 27 (1975), 636-665. Zbl 0312.06003, MR 0382086, 10.4153/CJM-1975-074-0
.

Files

Files Size Format View
MathBohem_149-2024-4_4.pdf 775.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo