Title:
|
Generalized derivations with power values on rings and Banach algebras (English) |
Author:
|
Hermas, Abderrahman |
Author:
|
Mamouni, Abdellah |
Author:
|
Oukhtite, Lahcen |
Language:
|
English |
Journal:
|
Mathematica Bohemica |
ISSN:
|
0862-7959 (print) |
ISSN:
|
2464-7136 (online) |
Volume:
|
149 |
Issue:
|
4 |
Year:
|
2024 |
Pages:
|
491-502 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
Let $R$ be a prime ring and $I$ a nonzero ideal of $R.$ The purpose of this paper is to classify generalized derivations of $R$ satisfying some algebraic identities with power values on $I.$ More precisely, we consider two generalized derivations $F$ and $H$ of $R$ satisfying one of the following identities: \begin {itemize} \item [(1)] $aF(x)^mH(y)^m=x^ny^n$ for all $x,y \in I,$ \item [(2)] $ (F(x)\circ H(y))^m=(x\circ y)^n$ for all $x,y \in I,$ \end {itemize} for two fixed positive integers $m\geq 1$, $n\geq 1$ and $a$ an element of the extended centroid of $R$. Finally, as an application, the same identities are studied locally on nonvoid open subsets of a prime Banach algebra. (English) |
Keyword:
|
prime ring |
Keyword:
|
generalized derivation |
Keyword:
|
Banach algebra |
Keyword:
|
Jacobson radical |
MSC:
|
16N60 |
MSC:
|
16W25 |
MSC:
|
46J10 |
DOI:
|
10.21136/MB.2024.0079-23 |
. |
Date available:
|
2024-12-13T19:04:52Z |
Last updated:
|
2024-12-13 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/152676 |
. |
Reference:
|
[1] Bonsall, F. F., Duncan, J.: Complete Normed Algebras.Ergebnisse der Mathematik und ihrer Grenzgebiete 80. Springer, New York (1973). Zbl 0271.46039, MR 0423029, 10.1007/978-3-642-65669-9 |
Reference:
|
[2] Brešar, M.: Introduction to Noncommutative Algebra.Universitext. Springer, Cham (2014). Zbl 1334.16001, MR 3308118, 10.1007/978-3-319-08693-4 |
Reference:
|
[3] Erickson, T. S., III, W. S. Martindale, Osborn, J. M.: Prime nonassociative algebras.Pac. J. Math. 60 (1975), 49-63. Zbl 0355.17005, MR 0382379, 10.2140/pjm.1975.60.49 |
Reference:
|
[4] Herstein, I. N.: Topics in Ring Theory.Chicago Lectures in Mathematics. University of Chicago Press, Chicago (1969). Zbl 0232.16001, MR 0271135 |
Reference:
|
[5] Jacobson, N.: Structure of Rings.Colloquium Publications 37. AMS, Providence (1964). Zbl 0073.02002, MR 0222106 |
Reference:
|
[6] Kharchenko, V. K.: Differential identities of prime rings.Algebra Logic 17 (1979), 155-168. Zbl 0423.16011, MR 0541758, 10.1007/BF01670115 |
Reference:
|
[7] Lanski, C.: An Engel condition with derivation.Proc. Am. Math. Soc. 118 (1993), 731-834. Zbl 0821.16037, MR 1132851, 10.1090/S0002-9939-1993-1132851-9 |
Reference:
|
[8] Lee, T.-K.: Semiprime rings with differential identities.Bull. Inst. Math., Acad. Sin. 20 (1992), 27-38. Zbl 0769.16017, MR 1166215 |
Reference:
|
[9] Lee, T.-K.: Generalized derivations of left faithful rings.Commun. Algebra 27 (1999), 4057-4073. Zbl 0946.16026, MR 1700189, 10.1080/00927879908826682 |
Reference:
|
[10] III, W. S. Martindale: Prime rings satisfying a generalized polynomial identity.J. Algebra 12 (1969), 576-584. Zbl 0175.03102, MR 0238897, 10.1016/0021-8693(69)90029-5 |
Reference:
|
[11] Sinclair, A. M.: Continuous derivations on Banach algebras.Proc. Am. Math. Soc. 29 (1969), 166-170. Zbl 0164.44603, MR 0233207, 10.1090/S0002-9939-1969-0233207-X |
. |