Previous |  Up |  Next

Article

Title: Existence, uniqueness and continuity results of weak solutions for nonlocal nonlinear parabolic problems (English)
Author: Benhamoud, Tayeb
Author: Zaouche, Elmehdi
Author: Bousselsal, Mahmoud
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 149
Issue: 4
Year: 2024
Pages: 533-548
Summary lang: English
.
Category: math
.
Summary: This paper is concerned with the study of a nonlocal nonlinear parabolic problem associated with the equation $u_t-M(\int _{\Omega }\phi u {\rm d}x){\rm div} (A(x,t,u)\nabla u)=g(x,t,u)$ in $\Omega \times (0,T)$, where $\Omega $ is a bounded domain of $\mathbb {R}^{n}$ $(n\geq 1)$, $T>0$ is a positive number, $A(x,t,u)$ is an $n\times n$ matrix of variable coefficients depending on $u$ and $M\colon \mathbb {R}\rightarrow \mathbb {R}$, $\phi \colon \Omega \rightarrow \mathbb {R}$, $g\colon \Omega \times (0,T)\times \mathbb {R}\rightarrow \mathbb {R}$ are given functions. We consider two different assumptions on $g$. The existence of a weak solution for this problem is proved using the Schauder fixed point theorem for each of these assumptions. Moreover, if $A(x,t,u)=a(x,t)$ depends only on the variable $(x,t)$, we investigate two uniqueness theorems and give a continuity result depending on the initial data. (English)
Keyword: nonlocal nonlinear parabolic problem
Keyword: Schauder fixed point theorem
Keyword: weak solution
Keyword: existence
Keyword: uniqueness
MSC: 35D30
MSC: 35K55
MSC: 35Q92
DOI: 10.21136/MB.2024.0065-23
.
Date available: 2024-12-13T19:05:58Z
Last updated: 2024-12-13
Stable URL: http://hdl.handle.net/10338.dmlcz/152678
.
Reference: [1] Alves, C. O., Boudjeriou, T.: Existence of solution for a class of nonlocal problem via dynamical methods.Rend. Circ. Mat., Palermo (2) 71 (2022), 611-632. Zbl 1497.35209, MR 4453341, 10.1007/s12215-021-00644-4
Reference: [2] Alves, C. O., Covei, D.-P.: Existence of solution for a class of nonlocal elliptic problem via sub-supersolution method.Nonlinear Anal., Real World Appl. 23 (2015), 1-8. Zbl 1319.35057, MR 3316619, 10.1016/j.nonrwa.2014.11.003
Reference: [3] Anh, C. T., Tinh, L. T., Toi, V. M.: Global attractors for nonlocal parabolic equations with a new class of nonlinearities.J. Korean Math. Soc. 55 (2018), 531-551. Zbl 1415.35055, MR 3800554, 10.4134/JKMS.j170233
Reference: [4] Arcoya, D., Leonori, T., Primo, A.: Existence of solutions for semilinear nonlocal elliptic problems via a Bolzano theorem.Acta Appl. Math. 127 (2013), 87-104. Zbl 1280.35050, MR 3101144, 10.1007/s10440-012-9792-1
Reference: [5] Bousselsal, M., Zaouche, E.: Existence of solution for nonlocal heterogeneous elliptic problems.Mediterr. J. Math. 17 (2020), Article ID 129, 10 pages. Zbl 1448.35185, MR 4122738, 10.1007/s00009-020-01564-w
Reference: [6] Chipot, M.: Elements of Nonlinear Analysis.Birkhäuser Advanced Texts. Birkhäuser, Basel (2000). Zbl 0964.35002, MR 1801735, 10.1007/978-3-0348-8428-0
Reference: [7] Chipot, M., Lovat, B.: Some remarks on non local elliptic and parabolic problems.Nonlinear Anal., Theory Methods Appl. 30 (1997), 4619-4627. Zbl 0894.35119, MR 1603446, 10.1016/S0362-546X(97)00169-7
Reference: [8] Chipot, M., Lovat, B.: On the asymptotic behaviour of some nonlocal problems.Positivity 3 (1999), 65-81. Zbl 0921.35071, MR 1675465, 10.1023/A:1009706118910
Reference: [9] Chipot, M., Lovat, B.: Existence and uniqueness results for a class of nonlocal elliptic and parabolic problems.Dyn. Contin. Discrete Impuls. Syst., Ser. A, Math. Anal. 8 (2001), 35-51. Zbl 0984.35066, MR 1820664
Reference: [10] Chipot, M., Molinet, L.: Asymptotic behavior of some nonlocal diffusion problems.Appl. Anal. 80 (2001), 279-315. Zbl 1023.35016, MR 1914683, 10.1080/00036810108840994
Reference: [11] Corrêa, F. J. S. A.: On positive solutions of nonlocal and nonvariational elliptic problems.Nonlinear Anal., Theory Methods Appl., Ser. A 59 (2004), 1147-1155. Zbl 1133.35043, MR 2098510, 10.1016/j.na.2004.08.010
Reference: [12] Dautray, R., Lions, J.-L.: Mathematical Analysis and Numerical Methods for Science and Technology. Vol. 5. Evolution Problems I.Springer, Berlin (1992). Zbl 0755.35001, MR 1156075
Reference: [13] Menezes, S. B. de: Remarks on weak solutions for a nonlocal parabolic problem.Int. J. Math. Math. Sci. 2006 (2006), Article ID 82654, 10 pages. Zbl 1136.35407, MR 2172802, 10.1155/IJMMS/2006/82654
Reference: [14] Hale, J. K., Lunel, S. M. Verduyn: Introduction to Functional Differential Equations.Applied Mathematical Sciences 99. Springer, New York (1993). Zbl 0787.34002, MR 1243878, 10.1007/978-1-4612-4342-7
Reference: [15] Jiang, R., Zhai, C.: Properties of unique positive solutions for a class of nonlocal semilinear elliptic equations.Topol. Methods Nonlinear Anal. 50 (2017), 669-682. Zbl 1387.35240, MR 3747033, 10.12775/TMNA.2017.036
Reference: [16] Jin, F., Yan, B.: Existence and global behavior of the solution to a parabolic equation with nonlocal diffusion.AIMS Math. 6 (2021), 5292-5315. Zbl 1484.35263, MR 4236733, 10.3934/math.2021313
Reference: [17] Lovat, B.: Études de quelques problèmes paraboliques non locaux: Thèse.Université de Metz, Metz (1995), French Available at https://hal.univ-lorraine.fr/tel-01777092\kern0pt.
Reference: [18] Yan, B., Wang, D.: The multiplicity of positive solutions for a class of nonlocal elliptic problem.J. Math. Anal. Appl. 442 (2016), 72-102. Zbl 1344.35043, MR 3498319, 10.1016/j.jmaa.2016.04.023
Reference: [19] Zaouche, E.: Nontrivial weak solutions for nonlocal nonhomogeneous elliptic problems.Appl. Anal. 101 (2022), 1261-1270. Zbl 1489.35091, MR 4408272, 10.1080/00036811.2020.1778674
Reference: [20] Zaouche, E.: Existence theorems of nontrivial and positive solutions for nonlocal inhomogeneous elliptic problems.Ric. Mat. 72 (2023), 949-960. Zbl 1525.35125, MR 4649474, 10.1007/s11587-021-00612-1
.

Files

Files Size Format View
MathBohem_149-2024-4_5.pdf 265.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo