Title:
|
Geometric approaches to establish the fundamentals of Lorentz spaces $\mathbb {R}_2^3$ and $\mathbb {R}_1^2$ (English) |
Author:
|
Çoruh Şenocak, Sevilay |
Author:
|
Yüce, Salim |
Language:
|
English |
Journal:
|
Mathematica Bohemica |
ISSN:
|
0862-7959 (print) |
ISSN:
|
2464-7136 (online) |
Volume:
|
149 |
Issue:
|
4 |
Year:
|
2024 |
Pages:
|
549-567 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
The aim of this paper is to investigate the orthogonality of vectors to each other and the Gram-Schmidt method in the Minkowski space $\mathbb {R}_2^3$. Hyperbolic cosine formulas are given for all triangle types in the Minkowski plane $\mathbb {R}_1^2$. Moreover, the Pedoe inequality is explained for each type of triangle with the help of hyperbolic cosine formulas. Thus, the Pedoe inequality allowed us to establish a connection between two similar triangles in the Minkowski plane. In the continuation of the study, the rotation matrix that provides both point and axis rotation in the Minkowski plane is obtained by using the Lorentz matrix multiplication. Also, it is stated to be an orthogonal matrix. Moreover, the orthogonal projection formulas on the spacelike and timelike lines are given in the Minkowski plane. In addition, the distances of any point from the spacelike or timelike line \hbox {are formulated}. (English) |
Keyword:
|
Gram-Schmidt method |
Keyword:
|
Lorentz triangle |
Keyword:
|
hyperbolic cosine formulas |
Keyword:
|
Pedoe inequality |
Keyword:
|
Lorentz matrix multiplication |
Keyword:
|
orthogonal projection |
MSC:
|
53B30 |
DOI:
|
10.21136/MB.2024.0111-23 |
. |
Date available:
|
2024-12-13T19:06:34Z |
Last updated:
|
2024-12-13 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/152679 |
. |
Reference:
|
[1] Birman, G. S.: On $L^2$ and $L^3$.Elem. Math. 43 (1988), 46-50. Zbl 0705.53006, MR 0933264 |
Reference:
|
[2] Birman, G. S.: Support functions and integral formulas in the Lorentzian plane.J. Geom. 72 (2001), 11-17. Zbl 1012.53062, MR 1891131, 10.1007/s00022-001-8565-1 |
Reference:
|
[3] Birman, G. S., Nomizu, K.: The Gauss-Bonnet theorem for 2-dimensional spacetimes.Mich. Math. J. 31 (1984), 77-81. Zbl 0591.53053, MR 0736471, 10.1307/mmj/1029002964 |
Reference:
|
[4] Birman, G. S., Nomizu, K.: Trigonometry in Lorentzian geometry.Am. Math. Mon. 91 (1984), 543-549. Zbl 0555.51009, MR 0764793, 10.2307/2323737 |
Reference:
|
[5] Gündoğan, H., Keçilioğlu, O.: Lorentzian matrix multiplication and the motions on Lorentzian plane.Glas. Mat., III. Ser. 41 (2006), 329-334. Zbl 1122.15026, MR 2282742, 10.3336/gm.41.2.15 |
Reference:
|
[6] Keçilioğlu, O., Gündoğan, H.: Pseudo matrix multiplication.Commun. Fac. Sci. Univ. Ank., Sér. A1, Math. Stat. 66 (2017), 37-43. Zbl 1390.15076, MR 3637005, 10.1501/Commua1_0000000798 |
Reference:
|
[7] López, R.: Differential geometry of curves and surfaces in Lorentz-Minkowski space.Int. Electron. J. Geom. 7 (2014), 44-107. Zbl 1312.53022, MR 3198740, 10.36890/iejg.594497 |
Reference:
|
[8] Mitrinović, D. S., Pečarić, J. E.: About the Neuberg-Pedoe and the Oppenheim inequalities.J. Math. Anal. Appl. 129 (1988), 196-210. Zbl 0644.26015, MR 0921386, 10.1016/0022-247X(88)90242-9 |
Reference:
|
[9] Nešović, E.: Hyperbolic angle function in the Lorentzian plane.Kragujevac J. Math. 28 (2005), 139-144. Zbl 1120.53305, MR 2211248 |
Reference:
|
[10] Nešović, E., Torgašev, M. Petrović: Some trigonometric relations in the Lorentzian plane.Kragujevac J. Math. 25 (2003), 219-225. MR 2120595 |
Reference:
|
[11] O'Neill, B.: Semi-Riemannian Geometry: With Applications to Relativity.Pure and Applied Mathematics 103. Academic Press, New York (1983). Zbl 0531.53051, MR 0719023 |
Reference:
|
[12] Pedoe, D.: Inside-outside: The Neuberg-Pedoe inequality.Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz. 544-576 (1976), 95-97. MR 0440458 |
Reference:
|
[13] Ratcliffe, J. G.: Hyperbolic $n$-manifolds.Foundations of Hyperbolic Manifolds Graduate Texts in Mathematics 149. Springer, New York (2006), 508-599. Zbl 1106.51009, MR 2249478, 10.1007/978-0-387-47322-2_11 |
Reference:
|
[14] Satnoianu, R., Janous, W., Donini, D.: A two-triangle inequality.Am. Math. Mon. 112 (2005), page 280. 10.2307/30037460 |
Reference:
|
[15] Yüce, S., Şenocak, S. Çoruh: A Comprehensive Insight Into Lorentzian Geometry.Pegem Academy Publishing Training and Consultancy Services Tic. Ltd. Şti., Ankara (2023). |
Reference:
|
[16] Yüce, S., Kuruoğlu, N.: Cauchy formulas for enveloping curves in the Lorentzian plane and Lorentzian kinematics.Result. Math. 54 (2009), 199-206. Zbl 1186.53015, MR 2529638, 10.1007/s00025-008-0303-7 |
. |