Previous |  Up |  Next

Article

Title: Geometric approaches to establish the fundamentals of Lorentz spaces $\mathbb {R}_2^3$ and $\mathbb {R}_1^2$ (English)
Author: Çoruh Şenocak, Sevilay
Author: Yüce, Salim
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 149
Issue: 4
Year: 2024
Pages: 549-567
Summary lang: English
.
Category: math
.
Summary: The aim of this paper is to investigate the orthogonality of vectors to each other and the Gram-Schmidt method in the Minkowski space $\mathbb {R}_2^3$. Hyperbolic cosine formulas are given for all triangle types in the Minkowski plane $\mathbb {R}_1^2$. Moreover, the Pedoe inequality is explained for each type of triangle with the help of hyperbolic cosine formulas. Thus, the Pedoe inequality allowed us to establish a connection between two similar triangles in the Minkowski plane. In the continuation of the study, the rotation matrix that provides both point and axis rotation in the Minkowski plane is obtained by using the Lorentz matrix multiplication. Also, it is stated to be an orthogonal matrix. Moreover, the orthogonal projection formulas on the spacelike and timelike lines are given in the Minkowski plane. In addition, the distances of any point from the spacelike or timelike line \hbox {are formulated}. (English)
Keyword: Gram-Schmidt method
Keyword: Lorentz triangle
Keyword: hyperbolic cosine formulas
Keyword: Pedoe inequality
Keyword: Lorentz matrix multiplication
Keyword: orthogonal projection
MSC: 53B30
DOI: 10.21136/MB.2024.0111-23
.
Date available: 2024-12-13T19:06:34Z
Last updated: 2024-12-13
Stable URL: http://hdl.handle.net/10338.dmlcz/152679
.
Reference: [1] Birman, G. S.: On $L^2$ and $L^3$.Elem. Math. 43 (1988), 46-50. Zbl 0705.53006, MR 0933264
Reference: [2] Birman, G. S.: Support functions and integral formulas in the Lorentzian plane.J. Geom. 72 (2001), 11-17. Zbl 1012.53062, MR 1891131, 10.1007/s00022-001-8565-1
Reference: [3] Birman, G. S., Nomizu, K.: The Gauss-Bonnet theorem for 2-dimensional spacetimes.Mich. Math. J. 31 (1984), 77-81. Zbl 0591.53053, MR 0736471, 10.1307/mmj/1029002964
Reference: [4] Birman, G. S., Nomizu, K.: Trigonometry in Lorentzian geometry.Am. Math. Mon. 91 (1984), 543-549. Zbl 0555.51009, MR 0764793, 10.2307/2323737
Reference: [5] Gündoğan, H., Keçilioğlu, O.: Lorentzian matrix multiplication and the motions on Lorentzian plane.Glas. Mat., III. Ser. 41 (2006), 329-334. Zbl 1122.15026, MR 2282742, 10.3336/gm.41.2.15
Reference: [6] Keçilioğlu, O., Gündoğan, H.: Pseudo matrix multiplication.Commun. Fac. Sci. Univ. Ank., Sér. A1, Math. Stat. 66 (2017), 37-43. Zbl 1390.15076, MR 3637005, 10.1501/Commua1_0000000798
Reference: [7] López, R.: Differential geometry of curves and surfaces in Lorentz-Minkowski space.Int. Electron. J. Geom. 7 (2014), 44-107. Zbl 1312.53022, MR 3198740, 10.36890/iejg.594497
Reference: [8] Mitrinović, D. S., Pečarić, J. E.: About the Neuberg-Pedoe and the Oppenheim inequalities.J. Math. Anal. Appl. 129 (1988), 196-210. Zbl 0644.26015, MR 0921386, 10.1016/0022-247X(88)90242-9
Reference: [9] Nešović, E.: Hyperbolic angle function in the Lorentzian plane.Kragujevac J. Math. 28 (2005), 139-144. Zbl 1120.53305, MR 2211248
Reference: [10] Nešović, E., Torgašev, M. Petrović: Some trigonometric relations in the Lorentzian plane.Kragujevac J. Math. 25 (2003), 219-225. MR 2120595
Reference: [11] O'Neill, B.: Semi-Riemannian Geometry: With Applications to Relativity.Pure and Applied Mathematics 103. Academic Press, New York (1983). Zbl 0531.53051, MR 0719023
Reference: [12] Pedoe, D.: Inside-outside: The Neuberg-Pedoe inequality.Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz. 544-576 (1976), 95-97. MR 0440458
Reference: [13] Ratcliffe, J. G.: Hyperbolic $n$-manifolds.Foundations of Hyperbolic Manifolds Graduate Texts in Mathematics 149. Springer, New York (2006), 508-599. Zbl 1106.51009, MR 2249478, 10.1007/978-0-387-47322-2_11
Reference: [14] Satnoianu, R., Janous, W., Donini, D.: A two-triangle inequality.Am. Math. Mon. 112 (2005), page 280. 10.2307/30037460
Reference: [15] Yüce, S., Şenocak, S. Çoruh: A Comprehensive Insight Into Lorentzian Geometry.Pegem Academy Publishing Training and Consultancy Services Tic. Ltd. Şti., Ankara (2023).
Reference: [16] Yüce, S., Kuruoğlu, N.: Cauchy formulas for enveloping curves in the Lorentzian plane and Lorentzian kinematics.Result. Math. 54 (2009), 199-206. Zbl 1186.53015, MR 2529638, 10.1007/s00025-008-0303-7
.

Files

Files Size Format View
MathBohem_149-2024-4_6.pdf 272.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo