Previous |  Up |  Next

Article

Full entry | Fulltext not available (moving wall 24 months)      Feedback
Keywords:
Ikeda Nakayama module; essential Ikeda Nakayama module; nil injective; nonsingular
Summary:
Let $R$ be an associative ring and $M$ be a left $R$-module. We introduce the concept of the incidence module $I(X, M)$ of a locally finite partially ordered set $X$ over $M$. We study the properties of $I(X, M)$ and give the necessary and sufficient conditions for the incidence module to be an IN-module, \EIN -module, nil injective module and nonsingular module, respectively. Furthermore, we show that the class of \EIN -modules is closed under direct product and upper triangular matrix modules.
References:
[1] Agnarsson, G., Amitsur, S. A., Robson, J. C.: Recognition of matrix rings. II. Isr. J. Math. 96 (1996), 1-13. DOI 10.1007/BF02785529 | MR 1432722 | Zbl 0878.16015
[2] Ahmed, F. A., Abdul-Jabbar, A. M.: On characterizations and properties of nil-injective rings and modules. AIP Conf. Proc. 2554 (2023), Article ID 020012. DOI 10.1063/5.0104696
[3] Al-Thukair, F., Singh, S., Zaguia, I.: Maximal ring of quotients of an incidence algebra. Arch. Math. 80 (2003), 358-362. DOI 10.1007/s00013-003-4590-7 | MR 1982835 | Zbl 1044.16025
[4] Camillo, V., Nicholson, W. K., Yousif, M. F.: Ikeda-Nakayama rings. J. Algebra 226 (2000), 1001-1010. DOI 10.1006/jabr.1999.8217 | MR 1752773 | Zbl 0958.16002
[5] Derakhshan, M., Sahebi, S., Javadi, H. H. S.: A note on essential Ikeda-Nakayama rings. Rend. Circ. Mat. Palermo (2) 71 (2022), 145-151. DOI 10.1007/s12215-021-00610-0 | MR 4397978 | Zbl 1496.16003
[6] Doubilet, P., Rota, G.-C., Stanley, R.: On the foundations of combinatorial theory. VI. The idea of generating function. Proceedings of the Sixth Berkeley Symposium on Mathematical Statistics and Probability. Volume II. Probability Theory University of California Press, Berkeley (1972), 267-318. MR 0403987 | Zbl 0267.05002
[7] Esin, S., Kanuni, M., Koç, A.: Characterization of some ring properties in incidence algebras. Commun. Algebra 39 (2011), 3836-3848. DOI 10.1080/00927872.2010.512589 | MR 2845605 | Zbl 1263.16030
[8] Ikeda, M., Nakayama, T.: On some characteristic properties of quasi-Frobenius and regular rings. Proc. Am. Math. Soc. 5 (1954), 15-19. DOI 10.1090/S0002-9939-1954-0060489-9 | MR 0060489 | Zbl 0055.02602
[9] Rota, G.-C.: On the foundations of combinatorial theory. I. Theory of Möbius functions. Z. Wahrscheinlichkeitstheor. Verw. Geb. 2 (1964), 340-368. DOI 10.1007/BF00531932 | MR 0174487 | Zbl 0121.02406
[10] Spiegel, E., O'Donnell, C. J.: Incidence Algebra. Pure and Applied Mathematics, Marcel Dekker 206. Marcel Dekker, New York (1997). MR 1445562 | Zbl 0871.16001
[11] Ssevviiri, D., Groenewald, N.: Generalization of nilpotency of ring elements to module elements. Commun. Algebra 42 (2014), 571-577. DOI 10.1080/00927872.2012.718822 | MR 3169589 | Zbl 1295.16011
[12] Stanley, R. P.: Enumerative Combinatorics. I. Wadsworth & Brooks/Cole Advanced Books & Software, Monterey (1986). DOI 10.1007/978-1-4615-9763-6 | MR 0847717 | Zbl 0608.05001
Partner of
EuDML logo