Previous |  Up |  Next

Article

Title: Conditional distributivity of overlap functions over uninorms with continuous underlying operators (English)
Author: Liu, Hui
Author: Li, Wenle
Language: English
Journal: Kybernetika
ISSN: 0023-5954 (print)
ISSN: 1805-949X (online)
Volume: 60
Issue: 6
Year: 2024
Pages: 694-722
Summary lang: English
.
Category: math
.
Summary: The investigations of conditional distributivity are encouraged by distributive logical connectives and their generalizations used in fuzzy set theory and were brought into focus by Klement in the closing session of Linzs 2000. This paper is mainly devoted to characterizing all pairs $(O,F)$ of aggregation functions that are satisfying conditional distributivity laws, where $O$ is an overlap function, and $F$ is a continuous t-conorm or a uninorm with continuous underlying operators. (English)
Keyword: aggregation function
Keyword: overlap function
Keyword: uninorm
Keyword: conditional distributivity
MSC: 08A72
MSC: 94A08
DOI: 10.14736/kyb-2024-6-0694
.
Date available: 2025-01-28T08:56:58Z
Last updated: 2025-01-28
Stable URL: http://hdl.handle.net/10338.dmlcz/152855
.
Reference: [1] Baets, B. De: Idempotent uninorm..European J. Oper. Res. 118 (1999), 3, 631-642.
Reference: [2] Baets, B. De, Fodor, J., Ruiz-Aguilera, D., Torrens, J.: Idempotent uninorms on finite ordinal scales..Int. J. Uncertainty, Fuzziness Knowledge-Based Systems 17 (2009), 1-14. Zbl 1178.03070, MR 2514519,
Reference: [3] Dubois, D., Pap, E., Prade, H.: Hybrid probabilistic-possibilistic mixtures and utility function..In: Preferences and Decisions under Incomplete Knowledge, Studies in Fuzziness and Soft Computing, Springer-Verlag Press, Berlin Heidelberg 2000, vol. 51, pp. 51-73. MR 1787355
Reference: [4] Gómez, D., Rodríguez, J. T., Yáñez, J., Montero, J.: A new modularity measure for Fuzzy Community detection problems based on overlap and grouping functions..Int. J. Approx. Reason. 74 (2016), 88-107. MR 3494291, 10.1016/j.ijar.2016.03.003
Reference: [5] Jočić, D., Štajner-Papuga, I.: Distributivity equations and Mayor's aggregation operators..Knowledge-Based Systems 52 (2013), 194-200.
Reference: [6] Jočić, D., Štajner-Papuga, I.: Restricted distributivity for aggregation operators with absorbing element..Fuzzy Sets Systems 224 (2013), 23-35. MR 3068106,
Reference: [7] Jočić, D., Štajner-Papuga, I.: Some implications of the restricted distributivity of aggregation operators with absorbing elements for utility theory..Fuzzy Sets Systems 291 (2016), 54-65. MR 3463653,
Reference: [8] Ruiz, D., Torrens, J.: Distributivity and conditional distributivity of a uninorm and a continuous t-conorm..IEEE Trans. Fuzzy Systems 14 (2006), 2, 180-190.
Reference: [9] Ruiz, D., Torrens, J., Baets, B. De, Fodor, J.: Some remarks on the characterization of idempotent uninorms..In: Lecture Notes in Artificial Intelligence(E. Hüllermeier, R. Kruse, and F. Hoffmann ed.), Springer-Verlag Press, Berlin, Heidelberg 2010, vol. 6178, pp. 425-434.
Reference: [10] Pak, E.: Distributivity equation for nullnorms..J. Electr. Engrg. 56 (2005), 12, 53-55.
Reference: [11] Klement, E. P., Mesiar, R., Pap, E.: Integration with respect to decomposable measures based on conditionally distributive semirings on the unit interval..Int. J. Uncertainty Fuzziness Knowledge-Based Systems 8 (2000), 701-717. MR 1803475,
Reference: [12] Klement, E. P., Mesiar, R., Pap, E.: Triangular Norms..Kluwer Academic Publishers, Dordrecht 2000. Zbl 1087.20041, MR 1790096
Reference: [13] Li, G., Liu, H. W., Su, Y.: On the conditional distributivity of nullnorms over uninorms..Inform. Sci. 317 (2015), 157-169. MR 3350704,
Reference: [14] Bustince, H., Fernández, J., Mesiar, R., Montero, J., Orduna, R.: Overlap functions..Nonlinear Analysis 72 (2010), 1488-1499. MR 2577550,
Reference: [15] Bustince, H., Fernández, J., Mesiar, R., Montero, J., Orduna, R.: Overlap index, overlap functions and migrativity..In: Proc. IFSA/EUSFLAT Conference 2009, pp. 300-305. MR 2577550
Reference: [16] Bustince, H., Pagola, M., Mesiar, R., Hüllermeier, E., Herrera, F.: Grouping, overlaps, and generalized bientropic functions for fuzzy modeling of pairwise comparisons..IEEE Trans. Fuzzy Systems 20 (2012), 3, 405-415.
Reference: [17] Liu, H., Zhao, B.: New results on the distributive laws of uninorms over overlap functions..IEEE Trans. Fuzzy Systems 29 (2021), 7, 1927-1941.
Reference: [18] Aczél, J.: Lectures on Functional Equations and Their Applications..Academic Press, New York 1966. Zbl 0139.09301, MR 0208210
Reference: [19] Drewniak, J., Dryga\`{s}, P., Rak, E.: Distributivity between uninorms and nullnorms..Fuzzy Sets Systems 159 (2008), 1646-1657. MR 2419975,
Reference: [20] Fodor, J., Roubens, M.: Fuzzy Preference Modelling and Multicriteria Decision Support..Kluwer Academic Publishers, Dordrecht 1994. Zbl 0827.90002
Reference: [21] Fodor, J., Yager, R. R., Rybalov, A.: Structure of uninorms..Int. J. Uncertainty, Fuzziness Knowledge-Based Systems 5 (1997), 411-427. Zbl 1232.03015, MR 1471619, 10.1142/S0218488597000312
Reference: [22] Martín, J., Mayor, G., Torrens, J.: On locally internal monotonic operations..Fuzzy Sets Systems 137 (2003), 27-42. MR 1992696,
Reference: [23] Qiao, J. S.: On distributive laws of uninorms over overlap and grouping functions..IEEE Trans. Fuzzy Systems 27 (2019), 2279-2292.
Reference: [24] Qiao, J. S., Hu, B. Q.: On interval additive generators of interval overlap functions and interval grouping functions..Fuzzy Sets Systems 323 (2017), Suppl. C, 19-55. MR 3660824,
Reference: [25] Zhu, K. Y., Wang, J. R., Jiang, B. H.: On distributive laws of overlap and grouping functions over uninorms..J. Intell. Fuzzy Syst. 38 (2020), 4441-4446.
Reference: [26] Miguel, L. D., Gómez, D., Rodríguez, J. T., Montero, J., Bustince, H., Dimuro, G. P., Sanz, J. A.: General overlap functions..Fuzzy Sets Systems 372 (2019), 81-96. MR 3961837,
Reference: [27] Elkano, M., Galar, M., Sanz, J. A., Schiavo, P F., Pereira, S., Dimuro, G. P., Borges, E. N., Bustince, H.: Consensus via penalty functions for decision making in ensembles in fuzzy rulebased classification systems..Appl. Soft Comput. 67 (2018), 728-740.
Reference: [28] Kuczma, M.: An Introduction to the Theory of Functional Equations and Inequalities: Cauchy's Equation and Jensen's Inequality..PWN - Polish Scientific Publishers, Warszawa 1985. MR 0788497
Reference: [29] Benvenuti, P., Mesiar, R.: Pseudo-arithmetical operations as a basis for the general measure and integration theory..Inform. Sci. 160 (2004), 1-11. Zbl 1040.28020, MR 2041855, 10.1016/j.ins.2003.07.005
Reference: [30] Drygaś, P., Rak, E.: Distributivity equation in the class of 2-uninorms..Fuzzy Sets Systems 291 (2016), 82-97. MR 3463655,
Reference: [31] Drygaś, P., Rak, E.: Distributivity equations in the class of semi-t-operators..Fuzzy Sets Systems 291 (2016), 66-81. MR 3463654,
Reference: [32] Calvo, T.: On some solutions of the distributivity equation..Fuzzy Sets Systems 104 (1999), 85-96. MR 1685812,
Reference: [33] Zhang, T. H., Qin, F.: On distributive laws between 2-uninorms and overlap (grouping) functions..Int. J. Approx. Reason. 119 (2020), 353-372. MR 4065983, 10.1016/j.ijar.2020.01.008
Reference: [34] Zhang, T. H., Qin, F., Li, W. H.: On the distributivity equations between uni-nullnorms and overlap (grouping) functions..Fuzzy Sets Systems 403 (2021), 56-77. MR 4174508,
Reference: [35] Sander, W., Siedekum, J.: Multiplication, distributivity and fuzzy integral I..Kybernetika 41 (2005), 397-422. MR 2181427
Reference: [36] Sander, W., Siedekum, J.: Multiplication, distributivity and fuzzy integral II..Kybernetika 41 (2005), 469-496. MR 2180358
Reference: [37] Sander, W., Siedekum, J.: Multiplication, distributivity and fuzzy integral III..Kybernetika 41 (2005), 497-518. MR 2180359
Reference: [38] Zhao, Y. F., Li, K.: On the distributivity equations between null-uninorms and overlap (grouping) functions..Fuzzy Sets Systems 433 (2022), 122-139. MR 4381093,
Reference: [39] Su, Y., Liu, H. W., Ruiz-Aguilera, D., Riera, J V., Torrens, J.: On the distributivity property for uninorms..Fuzzy Sets Systems 287 (2016), 184-202. MR 3447026,
Reference: [40] Su, Y., Zong, W., Liu, H. W.: On distributivity equations for uninorms over semi-t-operators..Fuzzy Sets Systems 299 (2016), 41-65. MR 3510876,
Reference: [41] Su, Y., Zong, W., Liu, H. W., Xue, P.: The distributivity equations for semi-t-operators over uninorms..Fuzzy Sets Systems 287 (2016), 172-183. MR 3447025,
.

Files

Files Size Format View
Kybernetika_60-2024-6_2.pdf 518.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo