Previous |  Up |  Next

Article

Keywords:
uninorm; triangular norm; divisibility; partial order; distributive lattice
Summary:
In this article, we investigate the algebraic structures of the partial orders induced by uninorms on a bounded lattice. For a class of uninorms with the underlying drastic product or drastic sum, we first present some conditions making a bounded lattice also a lattice with respect to the order induced by such uninorms. And then we completely characterize the distributivity of the lattices obtained.
References:
[1] Aşıcı, E., Karaçal, F.: On the $T$-partial order and properties. Inform. Sci. 267 (2014), 323-333. DOI  | MR 3177320
[2] Aşıcı, E.: An order induced by nullnorms and its properties. Fuzzy Sets Syst. 325 (2017), 35-46. DOI  | MR 3690353
[3] Aşıcı, E.: On the properties of the $F$-partial order and the equivalence of nullnorms. Fuzzy Sets Syst. 346 (2018), 72-84. DOI  | MR 3812758
[4] Birkhoff, G.: Lattice Theory, 3rd edition. Colloquium Publishers, American Mathematical Society, 1967. MR 0227053
[5] Calvo, T., Baets, B. De, Fodor, J.: The functional equations of Frank and Alsina for uninorms and nullnorms. Fuzzy Sets Syst. 120 (2001), 385-394. DOI  | MR 1829256 | Zbl 0977.03026
[6] Çaylı, G. D., Karaçal, F., Mesiar, R.: On a new class of uninorms on bounded lattices. Inform. Sci. 367-368 (2016), 221-231. DOI  | MR 3684677
[7] Duan, Q. H., Zhao, B.: Maximal chains on the interval $[0,1]$ with respect to t-norm-partial orders and uninorm-partial orders. Inform. Sci. 516 (2020), 419-428. DOI  | MR 4047496
[8] Dubois, D., Prade, H.: Fundamentals of Fuzzy Sets. Kluwer Academic Publisher, Boston 2000. MR 1890229
[9] Kesicioğlu, Ü. Ertuğrul M N., Karaçal, F.: Ordering based on uninorms. Inform. Sci. 330 (2016), 315-327. DOI 
[10] Gupta, V. K., Jayaram, B.: Importation lattices. Fuzzy Sets Syst. 405 (2021), 1-17. DOI  | MR 4191306
[11] Gupta, V. K., Jayaram, B.: Order based on associative operations. Inform. Sci. 566 (2021), 326-346. DOI  | MR 4246139
[12] Gupta, V. K., Jayaram, B.: Clifford's order obtained from uninorms on bounded lattices. Fuzzy Sets Syst. 462 (2023), 108384. DOI  | MR 4584388
[13] Karaçal, F., Kesicioğlu, M. N.: A $T$-partial order obtained from t-norms. Kybernetika 47 (2011), 300-314. DOI  | MR 2828579
[14] Karaçal, F., Mesiar, R.: Uninorms on bounded lattices. Fuzzy Sets Syst. 261 (2015), 33-43. DOI  | MR 3291484
[15] Kesicioğlu, M. N.: Some notes on the partial orders induced by a uninorm and a nullnorm in a bounded lattice. Fuzzy Sets Syst. 346 (2018), 55-71. DOI  | MR 3812757
[16] Kesicioğlu, M. N., Karaçal, F., Mesiar, R.: Order-equivalent triangular norms. Fuzzy Sets Syst. 268 (2015), 59-71. DOI  | MR 3320247
[17] Kesicioğlu, M. N., Ertuğrul, Ü., Karaçal, F.: An equivalence relation based on the $U$-partial order. Inform. Sci. 411 (2017), 39-51. DOI  | MR 3659313
[18] Kesicioğlu, M. N., Ertuğrul, Ü., Karaçal, F.: Some notes on $U$-partial order. Kybernetika 55 (2019), 518-530. DOI  | MR 4015996
[19] Kesicioğlu, M. N.: On the relationships between the orders induced by uninorms and nullnorms. Fuzzy Sets Syst. 378 (2020), 23-43. DOI  | MR 4028223
[20] Klement, E. P., Mesiar, R., Pap, E.: Triangular Norms. Springer Netherlands, 2000. MR 1790096 | Zbl 1087.20041
[21] Li, G., Liu, H. W., Su, Y.: On the conditional distributivity of nullnorms over uninorms. Inform. Sci. 317 (2015), 157-169. DOI  | MR 3350704
[22] Li, W. H., Qin, F.: Conditional distributivity equation for uninorms with continuous underlying operators. IEEE Trans. Fuzzy Syst. 28 (2020), 1664-1678. DOI  | MR 4251549
[23] Liu, Z. Q.: New R-implication generated by $T$-partial order. Comp. Appl. Math. 43 (2024), 425. DOI  | MR 4802965
[24] Liu, Z. Q.: Clifford's order based on non-commutative operations. Iran. J. Fuzzy syst. 21(3) (2024), 77-90. DOI  | MR 4781308
[25] Mayor, G., Torrens, J.: On a class of operators for expert systems. Int. J. Intell. Syst. 8 (1993), 771-778. DOI  | Zbl 0785.68087
[26] Mesiarová-Zemánková, A.: Characterization of uninorms with continuous underlying t-norm and t-conorm by means of the ordinal sum construction. Int. J. Approx. Reason. 83 (2017), 176-192. DOI  | MR 3614252
[27] Mesiarová-Zemánková, A.: Natural partial order induced by a commutative, associative and idempotent function. Inform. Sci. 545 (2021), 499-512. DOI  | MR 4156092
[28] Mesiarová-Zemánková, A.: Representation of non-commutative, idempotent, associative functions by pair-orders. Fuzzy Sets Syst. 475 (2023), 108759. DOI  | MR 4659799
[29] Nanavati, K., Jayaram, B.: Order from non-associative operations. Fuzzy Sets Syst. 467 (2023), 108484. DOI  | MR 4598454
[30] Saminger, B.: On ordinal sums of triangular norms on bounded lattices. Fuzzy Sets Syst. 157 (2006), 1403-1416. DOI  | MR 2226983 | Zbl 1099.06004
[31] Yager, R. R., Rybalov, A.: Uninorm aggregation operators. Fuzzy Sets Syst. 80 (1996), 111-120. DOI  | MR 1389951 | Zbl 0871.04007
[32] Yager, R. R.: Uninorms in fuzzy systems modeling. Fuzzy Sets Syst. 122 (2001), 167-175. DOI  | MR 1839955 | Zbl 0978.93007
Partner of
EuDML logo