[1] Aşıcı, E., Karaçal, F.:
On the $T$-partial order and properties. Inform. Sci. 267 (2014), 323-333.
DOI |
MR 3177320
[2] Aşıcı, E.:
An order induced by nullnorms and its properties. Fuzzy Sets Syst. 325 (2017), 35-46.
DOI |
MR 3690353
[3] Aşıcı, E.:
On the properties of the $F$-partial order and the equivalence of nullnorms. Fuzzy Sets Syst. 346 (2018), 72-84.
DOI |
MR 3812758
[4] Birkhoff, G.:
Lattice Theory, 3rd edition. Colloquium Publishers, American Mathematical Society, 1967.
MR 0227053
[5] Calvo, T., Baets, B. De, Fodor, J.:
The functional equations of Frank and Alsina for uninorms and nullnorms. Fuzzy Sets Syst. 120 (2001), 385-394.
DOI |
MR 1829256 |
Zbl 0977.03026
[6] Çaylı, G. D., Karaçal, F., Mesiar, R.:
On a new class of uninorms on bounded lattices. Inform. Sci. 367-368 (2016), 221-231.
DOI |
MR 3684677
[7] Duan, Q. H., Zhao, B.:
Maximal chains on the interval $[0,1]$ with respect to t-norm-partial orders and uninorm-partial orders. Inform. Sci. 516 (2020), 419-428.
DOI |
MR 4047496
[8] Dubois, D., Prade, H.:
Fundamentals of Fuzzy Sets. Kluwer Academic Publisher, Boston 2000.
MR 1890229
[9] Kesicioğlu, Ü. Ertuğrul M N., Karaçal, F.:
Ordering based on uninorms. Inform. Sci. 330 (2016), 315-327.
DOI
[10] Gupta, V. K., Jayaram, B.:
Importation lattices. Fuzzy Sets Syst. 405 (2021), 1-17.
DOI |
MR 4191306
[11] Gupta, V. K., Jayaram, B.:
Order based on associative operations. Inform. Sci. 566 (2021), 326-346.
DOI |
MR 4246139
[12] Gupta, V. K., Jayaram, B.:
Clifford's order obtained from uninorms on bounded lattices. Fuzzy Sets Syst. 462 (2023), 108384.
DOI |
MR 4584388
[13] Karaçal, F., Kesicioğlu, M. N.:
A $T$-partial order obtained from t-norms. Kybernetika 47 (2011), 300-314.
DOI |
MR 2828579
[14] Karaçal, F., Mesiar, R.:
Uninorms on bounded lattices. Fuzzy Sets Syst. 261 (2015), 33-43.
DOI |
MR 3291484
[15] Kesicioğlu, M. N.:
Some notes on the partial orders induced by a uninorm and a nullnorm in a bounded lattice. Fuzzy Sets Syst. 346 (2018), 55-71.
DOI |
MR 3812757
[16] Kesicioğlu, M. N., Karaçal, F., Mesiar, R.:
Order-equivalent triangular norms. Fuzzy Sets Syst. 268 (2015), 59-71.
DOI |
MR 3320247
[17] Kesicioğlu, M. N., Ertuğrul, Ü., Karaçal, F.:
An equivalence relation based on the $U$-partial order. Inform. Sci. 411 (2017), 39-51.
DOI |
MR 3659313
[18] Kesicioğlu, M. N., Ertuğrul, Ü., Karaçal, F.:
Some notes on $U$-partial order. Kybernetika 55 (2019), 518-530.
DOI |
MR 4015996
[19] Kesicioğlu, M. N.:
On the relationships between the orders induced by uninorms and nullnorms. Fuzzy Sets Syst. 378 (2020), 23-43.
DOI |
MR 4028223
[21] Li, G., Liu, H. W., Su, Y.:
On the conditional distributivity of nullnorms over uninorms. Inform. Sci. 317 (2015), 157-169.
DOI |
MR 3350704
[22] Li, W. H., Qin, F.:
Conditional distributivity equation for uninorms with continuous underlying operators. IEEE Trans. Fuzzy Syst. 28 (2020), 1664-1678.
DOI |
MR 4251549
[23] Liu, Z. Q.:
New R-implication generated by $T$-partial order. Comp. Appl. Math. 43 (2024), 425.
DOI |
MR 4802965
[24] Liu, Z. Q.:
Clifford's order based on non-commutative operations. Iran. J. Fuzzy syst. 21(3) (2024), 77-90.
DOI |
MR 4781308
[25] Mayor, G., Torrens, J.:
On a class of operators for expert systems. Int. J. Intell. Syst. 8 (1993), 771-778.
DOI |
Zbl 0785.68087
[26] Mesiarová-Zemánková, A.:
Characterization of uninorms with continuous underlying t-norm and t-conorm by means of the ordinal sum construction. Int. J. Approx. Reason. 83 (2017), 176-192.
DOI |
MR 3614252
[27] Mesiarová-Zemánková, A.:
Natural partial order induced by a commutative, associative and idempotent function. Inform. Sci. 545 (2021), 499-512.
DOI |
MR 4156092
[28] Mesiarová-Zemánková, A.:
Representation of non-commutative, idempotent, associative functions by pair-orders. Fuzzy Sets Syst. 475 (2023), 108759.
DOI |
MR 4659799
[29] Nanavati, K., Jayaram, B.:
Order from non-associative operations. Fuzzy Sets Syst. 467 (2023), 108484.
DOI |
MR 4598454
[30] Saminger, B.:
On ordinal sums of triangular norms on bounded lattices. Fuzzy Sets Syst. 157 (2006), 1403-1416.
DOI |
MR 2226983 |
Zbl 1099.06004