Previous |  Up |  Next

Article

Keywords:
aggregation operations; semi-uninorms; additive generators; semi-t-norms; semi-t-conorms; finite chains
Summary:
This work explores commutative semi-uninorms on finite chains by means of strictly increasing unary functions and the usual addition. In this paper, there are three families of additively generated commutative semi-uninorms. We not only study the structures and properties of semi-uninorms in each family but also show the relationship among these three families. In addition, this work provides the characterizations of uninorms in $\mathcal{U}_{\min}$ and $\mathcal{U}_{\max}$ that are generated by additive generators.
References:
[1] Beliakov, G., Pradera, A., Calvo, T.: Aggregation functions: A guide for practitioners. Stud. Fuzziness Soft Comput. 221 (2007), Springer, Berlin, Heidelberg.
[2] Calvo, T., Mayor, G., Mesiar, R.: Aggregation operators: New trends and applications. Stud. Fuzziness Soft Comput. 97 (2002), Springer, Berlin, Heidelberg. DOI 10.1007/978-3-7908-1787-4 | MR 1936384
[3] Baets, B. De, Mesiar, R.: Triangular norms on product lattices. Fuzzy Sets Syst. 104 (1999), 61-75. DOI  | MR 1685810 | Zbl 0935.03060
[4] Baets, B. De, Mesiar, R.: Discrete Triangular Norms, in Topological and Algebraic Structures in Fuzzy Sets. Trends in Logic (S. Rodabaugh and E.-P. Klement, eds.), 20 (2003), pp. 389-400. DOI  | MR 2046749
[5] Baets, B. De, Fodor, J., Ruiz-Aguilera, D., Torrens, J.: Idempotent uninorms on finite ordinal scales. Int. J. Uncertain. Fuzziness Knowl.-Based Syst. 17 (2009), 1-14. DOI  | MR 2514519 | Zbl 1178.03070
[6] Durante, F., Klement, E. P., Mesiar, R., Sempi, C.: Conjunctors and their residual implicators: characterizations and construct methods. Mediterr. J. Math. 4 (2007), 343-356. DOI  | MR 2349892
[7] Fodor, J.: Smooth associative operations on finite ordinal scales. IEEE Trans. Fuzzy Syst. 8 (2000), 791-795. DOI 
[8] Fodor, J., Keresztfalvi, T.: Nonstandard conjunctions and implications in fuzzy logic. Int. J. Approx. Reason. 12 (1995), 69-84. DOI  | MR 1315634
[9] Fodor, J., Yager, R. R., Rybalov, A.: Structure of uninorms. Int. J. Uncertain. Fuzziness Knowl.-Based Syst. 5 (1997), 411-427. DOI  | MR 1471619 | Zbl 1232.03015
[10] Han, L., Liu, H. W.: On the distributivity of logical operators on a finite chain. School Math., Shandong University 2014, pp. 42-47. MR 3234920
[11] Kolesarova, A., Mesiar, R., Mordelova, J., Sempi, C.: Discrete copulas. IEEE Trans. Fuzzy Syst. 14 (2006), 698-705. DOI 
[12] Li, G., Liu, H. W., Fodor, J.: On weakly smooth uninorms on finite chain. Int. J. Intell. Syst. 30 (2015), 421-440. DOI 
[13] Liu, H. W.: Semi-uninorms and implications on a complete lattice. Fuzzy Sets Syst. 191 (2012), 72-82. DOI  | MR 2874824
[14] Munar, M., Massanet, S., Ruiz-Aguilera, D.: A review on logical connectives defined on finite chains. Fuzzy Sets Syst. 462 (2023), 108469. DOI  | MR 4584400
[15] Mas, M., Mayor, G., Torrens, J.: T-operators and uninorms on a finite totally ordered set. Int. J. Intell. Syst. 14 (1999), 909-922. DOI  | MR 1691482
[16] Mas, M., Monserrat, M., Torrens, J.: On bisymmetric operators on a finite chain. IEEE Trans. Fuzzy Syst. 11 (2003), 647-651. DOI 
[17] Mas, M., Monserrat, M., Torrens, J.: On left and right uninorms on a finite chain. Fuzzy Sets Syst. 146 (2004), 3-17. DOI  | MR 2074199 | Zbl 1045.03029
[18] Mas, M., Monserrat, M., Torrens, J.: Smooth t-subnorms on finite scales. Fuzzy Sets Syst. 167 (2011), 82-91. DOI  | MR 2765249
[19] Mayor, G., Monreal, J.: Additive generators of discrete conjunctive aggregation operations. IEEE Trans. Fuzzy Syst. 15 (2007), 1046-1052. DOI 
[20] Mayor, G., Monreal, J.: On some classes of discrete additive generators. Fuzzy Sets Syst. 264 (2015), 110-120. DOI  | MR 3303667
[21] Mayor, G., Torrens, J.: Triangular Norms on Discrete Settings, in Logical, Algebraic, Analytic, and Probabilistic Aspects of Triangular Norms. Elsevier, Amsterdam. 2005, pp. 189-230. MR 2165236
[22] Mayor, G., Suñer, J., Torrens, J.: Copula-like operations on finite settings. IEEE Trans. Fuzzy Syst. 13 (2005), 468-477. DOI 
[23] Pradera, A., Beliakov, G., Bustince, H.: A review of the relationships between implication, negation and aggregation functions from the point of view of material implication. Inform. Sci. 329 (2016), 357-380. DOI 
[24] Ruiz-Aguilera, D., Torrens, J.: A characterization of discrete uninorms having smooth underlying operators. Fuzzy Sets Syst. 268 (2015), 44-58. DOI  | MR 3320246
[25] Sander, W.: Associative aggregation operators. In: Aggregation Operators (T. Calvo, G. Mayor, R. Mesiar, eds.), Physica-Verlag, Heidelberg 2002, pp. 124-158. DOI  | MR 1936386
Partner of
EuDML logo