Previous |  Up |  Next

Article

Title: Additive generators of discrete semi-uninorms (English)
Author: Wang, Ya-Ming
Author: Zhan, Hang
Author: Zhao, Yuan-Yuan
Language: English
Journal: Kybernetika
ISSN: 0023-5954 (print)
ISSN: 1805-949X (online)
Volume: 60
Issue: 6
Year: 2024
Pages: 740-753
Summary lang: English
.
Category: math
.
Summary: This work explores commutative semi-uninorms on finite chains by means of strictly increasing unary functions and the usual addition. In this paper, there are three families of additively generated commutative semi-uninorms. We not only study the structures and properties of semi-uninorms in each family but also show the relationship among these three families. In addition, this work provides the characterizations of uninorms in $\mathcal{U}_{\min}$ and $\mathcal{U}_{\max}$ that are generated by additive generators. (English)
Keyword: aggregation operations
Keyword: semi-uninorms
Keyword: additive generators
Keyword: semi-t-norms
Keyword: semi-t-conorms
Keyword: finite chains
MSC: 46F10
MSC: 62E86
DOI: 10.14736/kyb-2024-6-0740
.
Date available: 2025-01-28T09:00:02Z
Last updated: 2025-01-28
Stable URL: http://hdl.handle.net/10338.dmlcz/152857
.
Reference: [1] Beliakov, G., Pradera, A., Calvo, T.: Aggregation functions: A guide for practitioners..Stud. Fuzziness Soft Comput. 221 (2007), Springer, Berlin, Heidelberg.
Reference: [2] Calvo, T., Mayor, G., Mesiar, R.: Aggregation operators: New trends and applications..Stud. Fuzziness Soft Comput. 97 (2002), Springer, Berlin, Heidelberg. MR 1936384, 10.1007/978-3-7908-1787-4
Reference: [3] Baets, B. De, Mesiar, R.: Triangular norms on product lattices..Fuzzy Sets Syst. 104 (1999), 61-75. Zbl 0935.03060, MR 1685810,
Reference: [4] Baets, B. De, Mesiar, R.: Discrete Triangular Norms, in Topological and Algebraic Structures in Fuzzy Sets..Trends in Logic (S. Rodabaugh and E.-P. Klement, eds.), 20 (2003), pp. 389-400. MR 2046749,
Reference: [5] Baets, B. De, Fodor, J., Ruiz-Aguilera, D., Torrens, J.: Idempotent uninorms on finite ordinal scales..Int. J. Uncertain. Fuzziness Knowl.-Based Syst. 17 (2009), 1-14. Zbl 1178.03070, MR 2514519,
Reference: [6] Durante, F., Klement, E. P., Mesiar, R., Sempi, C.: Conjunctors and their residual implicators: characterizations and construct methods..Mediterr. J. Math. 4 (2007), 343-356. MR 2349892,
Reference: [7] Fodor, J.: Smooth associative operations on finite ordinal scales..IEEE Trans. Fuzzy Syst. 8 (2000), 791-795.
Reference: [8] Fodor, J., Keresztfalvi, T.: Nonstandard conjunctions and implications in fuzzy logic..Int. J. Approx. Reason. 12 (1995), 69-84. MR 1315634,
Reference: [9] Fodor, J., Yager, R. R., Rybalov, A.: Structure of uninorms..Int. J. Uncertain. Fuzziness Knowl.-Based Syst. 5 (1997), 411-427. Zbl 1232.03015, MR 1471619,
Reference: [10] Han, L., Liu, H. W.: On the distributivity of logical operators on a finite chain..School Math., Shandong University 2014, pp. 42-47. MR 3234920
Reference: [11] Kolesarova, A., Mesiar, R., Mordelova, J., Sempi, C.: Discrete copulas..IEEE Trans. Fuzzy Syst. 14 (2006), 698-705.
Reference: [12] Li, G., Liu, H. W., Fodor, J.: On weakly smooth uninorms on finite chain..Int. J. Intell. Syst. 30 (2015), 421-440.
Reference: [13] Liu, H. W.: Semi-uninorms and implications on a complete lattice..Fuzzy Sets Syst. 191 (2012), 72-82. MR 2874824,
Reference: [14] Munar, M., Massanet, S., Ruiz-Aguilera, D.: A review on logical connectives defined on finite chains..Fuzzy Sets Syst. 462 (2023), 108469. MR 4584400,
Reference: [15] Mas, M., Mayor, G., Torrens, J.: T-operators and uninorms on a finite totally ordered set..Int. J. Intell. Syst. 14 (1999), 909-922. MR 1691482,
Reference: [16] Mas, M., Monserrat, M., Torrens, J.: On bisymmetric operators on a finite chain..IEEE Trans. Fuzzy Syst. 11 (2003), 647-651.
Reference: [17] Mas, M., Monserrat, M., Torrens, J.: On left and right uninorms on a finite chain..Fuzzy Sets Syst. 146 (2004), 3-17. Zbl 1045.03029, MR 2074199,
Reference: [18] Mas, M., Monserrat, M., Torrens, J.: Smooth t-subnorms on finite scales..Fuzzy Sets Syst. 167 (2011), 82-91. MR 2765249,
Reference: [19] Mayor, G., Monreal, J.: Additive generators of discrete conjunctive aggregation operations..IEEE Trans. Fuzzy Syst. 15 (2007), 1046-1052.
Reference: [20] Mayor, G., Monreal, J.: On some classes of discrete additive generators..Fuzzy Sets Syst. 264 (2015), 110-120. MR 3303667,
Reference: [21] Mayor, G., Torrens, J.: Triangular Norms on Discrete Settings, in Logical, Algebraic, Analytic, and Probabilistic Aspects of Triangular Norms..Elsevier, Amsterdam. 2005, pp. 189-230. MR 2165236
Reference: [22] Mayor, G., Suñer, J., Torrens, J.: Copula-like operations on finite settings..IEEE Trans. Fuzzy Syst. 13 (2005), 468-477.
Reference: [23] Pradera, A., Beliakov, G., Bustince, H.: A review of the relationships between implication, negation and aggregation functions from the point of view of material implication..Inform. Sci. 329 (2016), 357-380.
Reference: [24] Ruiz-Aguilera, D., Torrens, J.: A characterization of discrete uninorms having smooth underlying operators..Fuzzy Sets Syst. 268 (2015), 44-58. MR 3320246,
Reference: [25] Sander, W.: Associative aggregation operators..In: Aggregation Operators (T. Calvo, G. Mayor, R. Mesiar, eds.), Physica-Verlag, Heidelberg 2002, pp. 124-158. MR 1936386,
.

Files

Files Size Format View
Kybernetika_60-2024-6_4.pdf 444.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo