Previous |  Up |  Next

Article

Title: Equilibrium analysis of distributed aggregative game with misinformation (English)
Author: Yuan, Meng
Author: Cheng, Zhaoyang
Author: Ma, Te
Language: English
Journal: Kybernetika
ISSN: 0023-5954 (print)
ISSN: 1805-949X (online)
Volume: 60
Issue: 6
Year: 2024
Pages: 754-778
Summary lang: English
.
Category: math
.
Summary: This paper considers a distributed aggregative game problem for a group of players with misinformation, where each player has a different perception of the game. Player's deception behavior is inevitable in this situation for reducing its own cost. We utilize hypergame to model the above problems and adopt $\epsilon$-Nash equilibrium for hypergame to investigate whether players believe in their own cognition. Additionally, we propose a distributed deceptive algorithm for a player implementing deception and demonstrate the algorithm converges to $\epsilon$-Nash equilibrium for hypergame. Further, we provide conditions for the deceptive player to enhance its profit and offer the optimal deceptive strategy at a given tolerance $\epsilon$. Finally, we present the effectiveness of the algorithm through numerical experiments. (English)
Keyword: distributed aggregative game
Keyword: deceptive strategy
Keyword: hypergame
Keyword: $\epsilon $-Nash equilibrium for hypergame
MSC: 68W15
MSC: 68W40
MSC: 91A10
DOI: 10.14736/kyb-2024-6-0754
.
Date available: 2025-01-28T09:01:45Z
Last updated: 2025-01-28
Stable URL: http://hdl.handle.net/10338.dmlcz/152858
.
Reference: [1] Abuzainab, N., Saad, W.: A multiclass mean-field game for thwarting misinformation spread in the internet of battlefield things..IEEE Trans. Commun. 66 (2018), 12, 6643-6658.
Reference: [2] Chen, H., Li, Y., Louie, R. H., Vucetic, B.: Autonomous demand side management based on energy consumption scheduling and instantaneous load billing: An aggregative game approach..IEEE Trans. Smart Grid 5 (2014), 4, 1744-1754.
Reference: [3] Chen, J., Zhu, Q.: nterdependent strategic security risk management with bounded rationality in the internet of things..IEEE Trans. Inform. Forensics Security {\mi14} (2019), 11, 2958-2971.
Reference: [4] Cheng, Z., Chen, G., Hong, Y.: Single-leader-multiple-followers stackelberg security game with hypergame framework..IEEE Trans. Inform. Forensics Security 17 (2022), 954-969.
Reference: [5] Hespanha, J. P., Ateskan, Y. S., al., H. Kizilocak et: Deception in non-cooperative games with partial information..In: Proc. 2nd DARPA-JFACC Symposium on Advances in Enterprise Control, Citeseer 2000, pp. 1-9.
Reference: [6] Huang, S., Lei, J., Hong, Y.: A linearly convergent distributed Nash equilibrium seeking algorithm for aggregative games..IEEE Trans. Automat. Control 68 (2022), 3, 1753-1759. MR 4557578,
Reference: [7] Huang, L., Zhu, Q.: Duplicity games for deception design with an application to insider threat mitigation..IEEE Trans. Inform. Forensics Security 16 (2021), 4843-4856.
Reference: [8] Jelassi, S., Domingo-Enrich, C., Scieur, D., Mensch, A., Bruna, J.: Extragradient with player sampling for faster Nash equilibrium finding..In: Proc. International Conference on Machine Learning 2020.
Reference: [9] Jin, R., He, X., Dai, H.: On the security-privacy tradeoff in collaborative security: A quantitative information flow game perspective..IEEE Trans. Inform. Forensics Security 14 (2019), 12, 3273-3286.
Reference: [10] Johansson, B., Keviczky, T., Johansson, M., Johansson, K. H.: Subgradient methods and consensus algorithms for solving convex optimization problems..In: 47th IEEE Conference on Decision and Control, IEEE 2008, pp. 4185-4190.
Reference: [11] Koshal, J., Nedić, A., Shanbhag, U. V.: Distributed algorithms for aggregative games on graphs..Oper. Res. 64 (2016), 3, 680-704. MR 3515205,
Reference: [12] Kovach, N. S., Gibson, A. S., Lamont, G. B.: Hypergame theory: a model for conflict, misperception, and deception..Game Theory (2015). MR 3391789
Reference: [13] Lei, J., Shanbhag, U. V.: Asynchronous schemes for stochastic and misspecified potential games and nonconvex optimization..Operations Research 68 (2020), 6, 1742-1766. MR 4217264,
Reference: [14] Liang, S., Yi, P., Hong, Y., Peng, K.: Exponentially convergent distributed Nash equilibrium seeking for constrained aggregative games..Autonomous Intell. Systems 2 (2022), 1, 6. MR 4335720,
Reference: [15] Ma, J., Yang, Z., Chen, Z.: Distributed Nash equilibrium tracking via the alternating direction method of multipliers..Kybernetika 59 (2023), 4, 612-632. MR 4660381,
Reference: [16] Meng, Y., Broom, M., Li, A.: Impact of misinformation in the evolution of collective cooperation on networks..J. Royal Soc. Interface 20 (2023), 206, 20230295.
Reference: [17] Meng, Y., Cornelius, S. P., Liu, Y. Y., Li, A.: Dynamics of collective cooperation under personalised strategy updates..Nature Commun. 15 (2024), 1, 3125.
Reference: [18] Nedic, A., Ozdaglar, A., Parrilo, P. A.: Constrained consensus and optimization in multi-agent networks..IEEE Trans. Automat. Control 55 (2010), 4, 922-938. MR 2654432,
Reference: [19] Nguyen, K. C., Alpcan, T., Basar, T.: Security games with incomplete information..In: 2009 IEEE International Conference on Communications, pp. 1-6.
Reference: [20] Paccagnan, D., Gentile, B., Parise, F., Kamgarpour, M., Lygeros, J.: Distributed computation of generalized Nash equilibria in quadratic aggregative games with affine coupling constraints..In: 55th IEEE Conference on Decision and Control, IEEE 2016, pp. 6123-6128.
Reference: [21] Paccagnan, D., Gentile, B., Parise, F., Kamgarpour, M., Lygeros, J.: Nash and wardrop equilibria in aggregative games with coupling constraints..IEEE Trans. Automat. Control 64 (2018), 4, 1373-1388. MR 3936417,
Reference: [22] Pawlick, J., Colbert, E., Zhu, Q.: Modeling and analysis of leaky deception using signaling games with evidence..IEEE Trans. Inform. Forensics Security 14 (2018), 7, 1871-1886.
Reference: [23] Sasaki, Y.: Preservation of misperceptions-stability analysis of hypergames..In: Proc. 52nd Annual Meeting of the ISSS-2008, Madison 2008.
Reference: [24] Sasaki, Y.: Generalized Nash equilibrium with stable belief hierarchies in static games with unawareness..Ann. Oper. Res. 256 (2017), 271-284. MR 3697211,
Reference: [25] Scutari, G., Palomar, D. P., Facchinei, F., Pang, J.-S.: Convex optimization, game theory, and variational inequality theory..IEEE Signal Process. Magazine 27 (2010), 3, 35-49. MR 2756856,
Reference: [26] Wang, M., Hipel, K. W., Fraser, N. M.: Modeling misperceptions in games..Behavioral Sci. 33 (1988), 3, 207-223. MR 0946274,
Reference: [27] Wang, J., Zhang, J. F., He, X.: Differentially private distributed algorithms for stochastic aggregative games..Automatica 142 (2022), 110440. MR 4437624,
Reference: [28] Xu, G., Chen, G., Qi, H., Hong, Y.: Efficient algorithm for approximating Nash equilibrium of distributed aggregative games..IEEE Trans. Cybernet. 53 (2023), 7, 4375-4387.
Reference: [29] Yilmaz, T., Ulusoy, Ö.: Misinformation propagation in online social networks: game theoretic and reinforcement learning approaches..IEEE Trans. Comput. Social Systems (2022). MR 4682418,
Reference: [30] Yu, S., Sun, Q., Yang, Z.: Recent advances on false information governance..Control Theory Technol. 21 (2023), 1, 110-113. MR 4253447,
Reference: [31] Zhang, H., Qin, H., Chen, G.: Bayesian Nash equilibrium seeking for multi-agent incomplete-information aggregative games..Kybernetika (2023), 575-591, 09 2023. MR 4660379,
Reference: [32] Zhang, T. Y., Ye, D.: False data injection attacks with complete stealthiness in cyber-physical systems: A self-generated approach..Automatica 120 (2020), 109117. MR 4118793,
.

Files

Files Size Format View
Kybernetika_60-2024-6_5.pdf 1.076Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo