Previous |  Up |  Next

Article

Title: Structure of the unit group of the group algebras of non-metabelian groups of order 128 (English)
Author: Abhilash, Navamanirajan
Author: Nandakumar, Elumalai
Author: Sharma, Rajendra Kumar
Author: Mittal, Gaurav
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 150
Issue: 1
Year: 2025
Pages: 1-23
Summary lang: English
.
Category: math
.
Summary: We characterize the unit group for the group algebras of non-metabelian groups of order 128 over the finite fields whose characteristic does not divide the order of the group. Up to isomorphism, there are 2328 groups of order 128 and only 14 of them are non-metabelian. We determine the Wedderburn decomposition of the group algebras of these non-metabelian groups and subsequently characterize their unit groups. (English)
Keyword: non-metabelian groups
Keyword: finite field
Keyword: group algebra
Keyword: unit group
MSC: 16U60
MSC: 20C05
DOI: 10.21136/MB.2024.0017-23
.
Date available: 2025-02-20T16:07:46Z
Last updated: 2025-02-20
Stable URL: http://hdl.handle.net/10338.dmlcz/152871
.
Reference: [1] Arvind, N., Panja, S.: Unit group of some finite semisimple group algebras.J. Egypt. Math. Soc. 30 (2022), Article ID 17, 9 pages. Zbl 1499.16055, MR 4488226, 10.1186/s42787-022-00151-0
Reference: [2] Bakshi, G. K., Gupta, S., Passi, I. B. S.: The algebraic structure of finite metabelian group algebras.Commun. Algebra 43 (2015), 2240-2257. Zbl 1328.20004, MR 3344186, 10.1080/00927872.2014.888566
Reference: [3] Broche, O., Río, Á. del: Wedderburn decomposition of finite group algebra.Finite Fields Appl. 13 (2007), 71-79. Zbl 1111.20005, MR 2284667, 10.1016/j.ffa.2005.08.002
Reference: [4] Creedon, L., Gildea, J.: The structure of the unit group of the group algebra $\Bbb F_{2^k}D_8$.Can. Math. Bull. 54 (2011), 237-243. Zbl 1242.16033, MR 2884238, 10.4153/CMB-2010-098-5
Reference: [5] Ferraz, R. A.: Simple components of center of $FG/J(FG)$.Commun. Algebra 36 (2008), 3191-3199. Zbl 1156.16019, MR 2441107, 10.1080/00927870802103503
Reference: [6] Gao, W., Geroldinger, A., Halter-Koch, F.: Group algebras of finite abelian groups and their applications to combinatorial problems.Rocky Mt. J. Math. 39 (2009), 805-823. Zbl 1200.05254, MR 2505775, 10.1216/RMJ-2009-39-3-805
Reference: [7] Group, GAP: GAP -- Groups, Algorithms, Programming -- a System for Computational Discrete Algebra. Version 4.12.2 (2022).Available at https://www.gap-system.org/.
Reference: [8] Gildea, J.: The structure of the unit group of the group algebra $\Bbb{F}_{2^k}A_4$.Czech. Math. J. 61 (2011), 531-539. Zbl 1237.16035, MR 2905421, 10.1007/s10587-011-0071-5
Reference: [9] Gildea, J., Monaghan, F.: Units of some group algebras of groups of order 12 over any finite field of characteristic 3.Algebra Discrete Math. 11 (2011), 46-58. Zbl 1256.16023, MR 2868359
Reference: [10] Hurley, T.: Group rings and rings of matrices.Int. J. Pure Appl. Math. 31 (2006), 319-335. Zbl 1136.20004, MR 2266951
Reference: [11] Hurley, T.: Convolutional codes from units in matrix and group rings.Int. J. Pure Appl. Math. 50 (2009), 431-463. Zbl 1173.94452, MR 2490664
Reference: [12] Hurley, P., Hurley, T.: Codes from zero-divisors and units in group rings.Int. J. Inf. Coding Theory 1 (2009), 55-87. Zbl 1213.94194, MR 2747648, 10.1504/IJICOT.2009.024047
Reference: [13] Khan, M., Sharma, R. K., Srivastava, J. B.: The unit group of $FS_4$.Acta Math. Hung. 118 (2008), 105-113. Zbl 1156.16024, MR 2378543, 10.1007/s10474-007-6169-4
Reference: [14] Kumar, Y., Sharma, R. K., Srivastava, J. B.: The structure of the unit group of the group algebra $\Bbb{F}S_5$ where $\Bbb{F}$ is a finite field with char $\Bbb{F}= p>5$.Acta Math. Acad. Paedagog. Nyházi. (N.S.) 33 (2017), 187-193. Zbl 1413.16053, MR 3896785
Reference: [15] Maheshwari, S., Sharma, R. K.: The unit group of the group algebra $\Bbb{F}_qSL(2;\Bbb{Z}_3)$.J. Algebra Comb. Discrete Struct. Appl. 3 (2016), 1-6. Zbl 1429.16027, MR 3450932, 10.13069/jacodesmath.83854
Reference: [16] Makhijani, N., Sharma, R. K., Srivastava, J. B.: A note on units in $\Bbb{F}_{p^m}D_{2p^n}$.Acta Math. Acad. Paedagog. Nyházi. (N.S.) 30 (2014), 17-25. Zbl 1324.16035, MR 3285078
Reference: [17] Makhijani, N., Sharma, R. K., Srivastava, J. B.: The unit group of finite group algebra of a generalized dihedral group.Asian-Eur. J. Math. 7 (2014), Article ID 1450034, 5 pages. Zbl 1301.16044, MR 3225093, 10.1142/S179355711450034X
Reference: [18] Makhijani, N., Sharma, R. K., Srivastava, J. B.: The unit group of $\Bbb{F}_q[D_{30}]$.Serdica Math. J. 41 (2015), 185-198. Zbl 1488.16060, MR 3363601
Reference: [19] Makhijani, N., Sharma, R. K., Srivastava, J. B.: A note on the structure of $\Bbb{F}_{p^k}A_5/J(\Bbb{F}_{p^k}A_5)$.Acta Sci. Math. 82 (2016), 29-43. Zbl 1399.16065, MR 3526335, 10.14232/actasm-014-311-2
Reference: [20] Mittal, G., Sharma, R. K.: On unit group of finite group algebras of non-metabelian groups up to order 72.Math. Bohem. 146 (2021), 429-455. Zbl 1513.16041, MR 4336549, 10.21136/MB.2021.0116-19
Reference: [21] Mittal, G., Sharma, R. K.: On unit group of finite semisimple group algebras of non-metabelian groups of order 108.J. Algebra Comb. Discrete Struct. Appl. 8 (2021), 59-71. Zbl 1494.16038, MR 4263329, 10.13069/jacodesmath.935938
Reference: [22] Mittal, G., Sharma, R. K.: Unit group of semisimple group algebras of some non-metabelian groups of order 120.Asian-Eur. J. Math. 15 (2022), Article ID 2250059, 11 pages. Zbl 1492.16039, MR 4404211, 10.1142/S1793557122500590
Reference: [23] Mittal, G., Sharma, R. K.: The unit groups of semisimple group algebras of some non-metabelian groups of order 144.Math. Bohem. 148 (2023), 631-646. Zbl 7790608, MR 4673842, 10.21136/MB.2022.0067-22
Reference: [24] Olivieri, A., Río, Á. del: An algorithm to compute the primitive central idempotents and the Wedderburn decomposition of a rational group algebra.J. Symb. Comput. 35 (2003), 673-687. Zbl 1050.16015, MR 1981041, 10.1016/S0747-7171(03)00035-X
Reference: [25] Pazderski, G.: The orders to which only belong metabelian groups.Math. Nachr. 95 (1980), 7-16. Zbl 0468.20018, MR 0592878, 10.1002/mana.19800950102
Reference: [26] Milies, C. Polcino, Sehgal, S. K.: An Introduction to Group Rings.Algebras and Applications 1. Kluwer Academic, Dordrecht (2002). Zbl 0997.20003, MR 1896125, 10.1007/978-94-010-0405-3
Reference: [27] Sharma, R. K., Mittal, G.: On the unit group of a semisimple group algebra $\Bbb{F}_qSL(2,\Bbb{Z}_5)$.Math. Bohem. 147 (2022), 1-10. Zbl 1513.16042, MR 4387464, 10.21136/MB.2021.0104-20
Reference: [28] Sharma, R. K., Srivastava, J. B., Khan, M.: The unit group of $\Bbb{F}A_4$.Publ. Math. Debr. 71 (2007), 21-26. Zbl 1135.16033, MR 2340031, 10.5486/PMD.2007.3541
Reference: [29] Sharma, R. K., Srivastava, J. B., Khan, M.: The unit group of $\Bbb{F}S_3$.Acta Math. Acad. Paedagog. Niházi. (N.S.) 23 (2007), 129-142. Zbl 1135.16034, MR 2368934
Reference: [30] Sharma, R. K., Yadav, P.: The unit group of $\Bbb{Z}_pQ_8$.Algebras Groups Geom. 25 (2008), 425-429. Zbl 1171.16303, MR 2526898
Reference: [31] Tang, G., Wei, Y., Li, Y.: Units groups of group algebras of some small groups.Czech. Math. J. 64 (2014), 149-157. Zbl 1340.16040, MR 3247451, 10.1007/s10587-014-0090-0
.

Files

Files Size Format View
MathBohem_150-2025-1_1.pdf 306.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo