Previous |  Up |  Next

Article

Title: On $k$-Pell numbers which are sum of two Narayana's cows numbers (English)
Author: Adédji, Kouèssi Norbert
Author: Bachabi, Mohamadou
Author: Togbé, Alain
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 150
Issue: 1
Year: 2025
Pages: 25-47
Summary lang: English
.
Category: math
.
Summary: For any positive integer $k\geq 2$, let $(P_n^{(k)})_{n\geq 2-k}$ be the $k$-generalized Pell sequence which starts with $0,\cdots ,0,1$ ($k$ terms) with the linear recurrence $$ P_{n}^{(k)} = 2P_{n-1}^{(k)}+P_{n-2}^{(k)}+\cdots +P_{n-k}^{(k)}\quad \text {for}\ n\geq 2. $$ Let $(N_n)_{n\geq 0}$ be Narayana's sequence given by $$ N_0=N_1=N_2=1\quad \text {and}\quad N_{n+3}=N_{n+2}+N_{n}. $$ The purpose of this paper is to determine all $k$-Pell numbers which are sums of two Narayana's numbers. More precisely, we study the Diophantine equation $$ P_p^{(k)}=N_n+N_m $$ in nonnegative integers $k$, $p$, $n$ and $m$. (English)
Keyword: Diophantine equation
Keyword: Narayana's cows sequence
Keyword: $k$-Pell number
Keyword: linear form in logarithms
Keyword: reduction method
MSC: 11B37
MSC: 11D61
MSC: 11D72
MSC: 11R04
DOI: 10.21136/MB.2024.0128-23
.
Date available: 2025-02-20T16:08:20Z
Last updated: 2025-02-20
Stable URL: http://hdl.handle.net/10338.dmlcz/152874
.
Reference: [1] Allouche, J.-P., Johnson, T.: Narayana's cows and delayed morphisms.3rd Computer Music Conference JIM96 IRCAM, Paris (1996), 6 pages.
Reference: [2] Baker, A., Davenport, H.: The equations $3x^2-2=y^2$ and $8x^2-7=z^2$.Q. J. Math., Oxf. II. Ser. 20 (1969), 129-137. Zbl 0177.06802, MR 0248079, 10.1093/qmath/20.1.129
Reference: [3] Bhoi, K., Ray, P. K.: Fermat numbers in Narayana's cows sequence.Integers 22 (2022), Article ID A16, 7 pages. Zbl 1493.11032, MR 4369871
Reference: [4] Bravo, J. J., Das, P., Guzmán, S.: Repdigits in Narayana's cows sequence and their consequences.J. Integer Seq. 23 (2020), Article ID 20.8.7, 15 pages. Zbl 1477.11031, MR 4161574
Reference: [5] Bravo, J. J., Herrera, J. L.: Repdigits in generalized Pell sequences.Arch. Math., Brno 56 (2020), 249-262. Zbl 07285963, MR 4173077, 10.5817/AM2020-4-249
Reference: [6] Bravo, J. J., Herrera, J. L., Luca, F.: On a generalization of the Pell sequence.Math. Bohem. 146 (2021), 199-213. Zbl 1499.11049, MR 4261368, 10.21136/MB.2020.0098-19
Reference: [7] Bugeaud, Y., Mignotte, M., Siksek, S.: Classical and modular approaches to exponential Diophantine equations I. Fibonacci and Lucas perfect powers.Ann. Math. (2) 163 (2006), 969-1018. Zbl 1113.11021, MR 2215137, 10.4007/annals.2006.163.969
Reference: [8] Dujella, A., Pethő, A.: A generalization of a theorem of Baker and Davenport.Q. J. Math., Oxf. II. Ser. 49 (1998), 291-306. Zbl 0911.11018, MR 1645552
Reference: [9] Faye, M. N., Rihane, S. E., Togbé, A.: On repdigits which are sum or differences of two $k$-Pell numbers.Math. Slovaca 73 (2023), 1409-1422. Zbl 7791584, MR 4678548, 10.1515/ms-2023-0102
Reference: [10] Sanchez, S. Guzmán, Luca, F.: Linear combinations of factorials and $S$-units in a binary recurrence sequence.Ann. Math. Qué. 38 (2014), 169-188. Zbl 1361.11007, MR 3283974, 10.1007/s40316-014-0025-z
Reference: [11] Kiliç, E.: On the usual Fibonacci and generalized order-$k$ Pell numbers.Ars Comb. 88 (2008), 33-45. Zbl 1224.11024, MR 2426404
Reference: [12] Normenyo, B. V., Rihane, S. E., Togbé, A.: Common terms of $k$-Pell numbers and Padovan or Perrin numbers.Arab. J. Math. 12 (2023), 219-232. Zbl 1523.11035, MR 4552849, 10.1007/s40065-022-00407-8
Reference: [13] Sloane, N. J. A.: The On-Line Encyclopedia of Integer Sequences.Available at https://oeis.org/ (2019). MR 3822822
Reference: [14] Wu, Z., Zhang, H.: On the reciprocal sums of higher-order sequences.Adv. Difference Equ. 2013 (2013), Paper ID 189, 8 pages. Zbl 1390.11042, MR 3084191, 10.1186/1687-1847-2013-189
.

Files

Files Size Format View
MathBohem_150-2025-1_2.pdf 280.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo