Title:
|
Finite logarithmic order meromorphic solutions of linear difference/differential-difference equations (English) |
Author:
|
Dahmani, Abdelkader |
Author:
|
Belaïdi, Benharrat |
Language:
|
English |
Journal:
|
Mathematica Bohemica |
ISSN:
|
0862-7959 (print) |
ISSN:
|
2464-7136 (online) |
Volume:
|
150 |
Issue:
|
1 |
Year:
|
2025 |
Pages:
|
49-70 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
Firstly we study the growth of meromorphic solutions of linear difference equation of the form$$ A_{k}(z)f(z+c_{k})+\cdots +A_{1}(z)f(z+c_{1})+A_{0}(z)f(z)=F(z), $$ where $A_{k}(z),\ldots ,A_{0}(z)$ and $F(z)$ are meromorphic functions of finite logarithmic order, $c_{i}$ $(i=1,\ldots ,k, k\in \mathbb {N})$ are distinct nonzero complex constants. Secondly, we deal with the growth of solutions of differential-difference equation of the form $$ \sum _{i=0}^{n}\sum _{j=0}^{m}A_{ij}(z)f^{(j)}(z+c_{i})=F(z), $$ where $A_{ij}(z)$ $(i=0,1,\ldots ,n, j=0,1,\ldots ,m,n, m\in \mathbb {N})$ and $F(z)$ are meromorphic functions of finite logarithmic order, $c_{i}$ $(i=0,\ldots ,n)$ are distinct complex constants. We extend some previous results obtained by Zhou and Zheng and Biswas to the logarithmic lower order.\looseness -1 (English) |
Keyword:
|
linear difference equation |
Keyword:
|
linear differential-difference equation |
Keyword:
|
meromorphic function |
Keyword:
|
logarithmic order |
Keyword:
|
logarithmic lower order |
MSC:
|
30D35 |
MSC:
|
39A10 |
MSC:
|
39B32 |
DOI:
|
10.21136/MB.2024.0107-23 |
. |
Date available:
|
2025-02-20T16:08:49Z |
Last updated:
|
2025-02-20 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/152875 |
. |
Reference:
|
[1] Belaïdi, B.: Growth of meromorphic solutions of finite logarithmic order of linear difference equations.Fasc. Math. 54 (2015), 5-20. Zbl 1331.39002, MR 3410127, 10.1515/fascmath-2015-0001 |
Reference:
|
[2] Belaïdi, B.: Some properties of meromorphic solutions of logarithmic order to higher order linear difference equations.Bul. Acad. Ştiinţe Repub. Mold., Mat. 2017 (2017), 15-28. Zbl 1390.39008, MR 3683507 |
Reference:
|
[3] Belaïdi, B.: Study of solutions of logarithmic order to higher order linear differential-difference equations with coefficients having the same logarithmic order.Univ. Iagell. Acta Math. 54 (2017), 15-32. Zbl 1396.30003, MR 3974205, 10.4467/20843828am.17.002.7078 |
Reference:
|
[4] Belaïdi, B.: Differential polynomials generated by solutions of second order non-homogeneous linear differential equations.Rad Hrvat. Akad. Znan. Umjet., Mat. Znan. 26 (2022), 139-153. Zbl 1496.34129, MR 4489511, 10.21857/y26kecl839 |
Reference:
|
[5] Biswas, N.: Growth of solutions of linear differential-difference equations with coefficients having the same logarithmic order.Korean J. Math. 29 (2021), 473-481. Zbl 1494.30060, MR 4337211, 10.11568/kjm.2021.29.3.473 |
Reference:
|
[6] Cao, T.-B., Liu, K., Wang, J.: On the growth of solutions of complex differential equations with entire coefficients of finite logarithmic order.Math. Rep., Buchar. 15 (2013), 249-269. Zbl 1349.34382, MR 3241648 |
Reference:
|
[7] Chen, B. Q., Chen, Z. X., Li, S.: Properties on solutions of some $q$-difference equations.Acta Math. Sin., Engl. Ser. 26 (2010), 1877-1886. Zbl 1202.30049, MR 2718087, 10.1007/s10114-010-8339-5 |
Reference:
|
[8] Chern, P. T.-Y.: On meromorphic functions with finite logarithmic order.Trans. Am. Math. Soc. 358 (2006), 473-489. Zbl 1079.30038, MR 2177027, 10.1090/s0002-9947-05-04024-9 |
Reference:
|
[9] Chiang, Y.-M., Feng, S.-J.: On the Nevanlinna characteristic of $f(z+\eta)$ and difference equations in the complex plane.Ramanujan J. 16 (2008), 105-129. Zbl 1152.30024, MR 2407244, 10.1007/s11139-007-9101-1 |
Reference:
|
[10] Ferraoun, A., Belaïdi, B.: Growth and oscillation of solutions to higher order linear differential equations with coefficients of finite logarithmic order.Sci. Stud. Res., Ser. Math. Inform. 26 (2016), 115-144. Zbl 1399.30122, MR 3626894 |
Reference:
|
[11] Goldberg, A. A., Ostrovskii, I. V.: Value Distribution of Meromorphic Functions.Translations of Mathematical Monographs 236. AMS, Providence (2008). Zbl 1152.30026, MR 2435270, 10.1090/mmono/236 |
Reference:
|
[12] Hayman, W. K.: Meromorphic Functions.Oxford Mathematical Monographs. Clarendon Press, Oxford (1964). Zbl 0115.06203, MR 0164038 |
Reference:
|
[13] Heittokangas, J., Korhonen, R., Rättyä, J.: Generalized logarithmic derivative estimates of Gol'dberg-Grinshtein type.Bull. Lond. Math. Soc. 36 (2004), 105-114. Zbl 1067.30060, MR 2011984, 10.1112/s0024609303002649 |
Reference:
|
[14] Laine, I.: Nevanlinna Theory and Complex Differential Equations.de Gruyter Studies in Mathematics 15. Walter de Gruyter, Berlin (1993). Zbl 0784.30002, MR 1207139, 10.1515/9783110863147 |
Reference:
|
[15] Liu, H., Mao, Z.: On the meromorphic solutions of some linear difference equations.Adv. Difference Equ. 2013 (2013), Article ID 133, 12 pages. Zbl 1390.39080, MR 3066837, 10.1186/1687-1847-2013-133 |
Reference:
|
[16] Wen, Z.-T.: Finite logarithmic order solutions of linear $q$-difference equations.Bull. Korean Math. Soc. 51 (2014), 83-98. Zbl 1282.39010, MR 3163379, 10.4134/bkms.2014.51.1.083 |
Reference:
|
[17] Wu, S., Zheng, X.: Growth of meromorphic solutions of complex linear differential-difference equations with coefficients having the same order.J. Math. Res. Appl. 34 (2014), 683-695. Zbl 1324.34183, MR 3288070, 10.3770/j.issn:2095-2651.2014.06.006 |
Reference:
|
[18] Yang, C.-C., Yi, H.-X.: Uniqueness Theory of Meromorphic Functions.Mathematics and its Applications 557. Kluwer Academic, Dordrecht (2003). Zbl 1070.30011, MR 2105668, 10.1007/978-94-017-3626-8 |
Reference:
|
[19] Zheng, X.-M., Chen, Z.-X.: Some properties of meromorphic solutions of $q$-difference equations.J. Math. Anal. Appl. 361 (2010), 472-480. Zbl 1185.39006, MR 2568711, 10.1016/j.jmaa.2009.07.009 |
Reference:
|
[20] Zhou, Y.-P., Zheng, X.-M.: Growth of meromorphic solutions to homogeneous and non-homogeneous linear (differential)-difference equations with meromorphic coefficients.Electron. J. Differ. Equ. 2017 (2017), Article ID 34, 15 pages. Zbl 1359.30048, MR 3609162 |
. |