Title:
|
Sakaguchi type functions defined by balancing polynomials (English) |
Author:
|
Saravanan, Gunasekar |
Author:
|
Baskaran, Sudharsanan |
Author:
|
Vanithakumari, Balasubramaniam |
Author:
|
Bulut, Serap |
Language:
|
English |
Journal:
|
Mathematica Bohemica |
ISSN:
|
0862-7959 (print) |
ISSN:
|
2464-7136 (online) |
Volume:
|
150 |
Issue:
|
1 |
Year:
|
2025 |
Pages:
|
71-83 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
The class of Sakaguchi type functions defined by balancing polynomials has been introduced as a novel subclass of bi-univalent functions. The bounds for the Fekete-Szegö inequality and the initial coefficients $\vert a_{2}\vert $ and $\vert a_{3}\vert $ have also been estimated. (English) |
Keyword:
|
analytic function |
Keyword:
|
bi-univalent function |
Keyword:
|
Sakaguchi type function |
Keyword:
|
balancing polynomial |
MSC:
|
30C45 |
MSC:
|
30C50 |
DOI:
|
10.21136/MB.2024.0173-23 |
. |
Date available:
|
2025-02-20T16:09:55Z |
Last updated:
|
2025-02-20 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/152876 |
. |
Reference:
|
[1] Aktaş, İ., Karaman, İ.: On some new subclasses of bi-univalent functions defined by balancing polynomials.KMU J. Eng. Natur. Sci. 5 (2023), 25-32. 10.55213/kmujens.1252471 |
Reference:
|
[2] Aldawish, I., Al-Hawary, T., Frasin, B. A.: Subclasses of bi-univalent functions defined by Frasin differential operator.Mathematics 8 (2020), Article ID 783, 11 pages. MR 4325637, 10.3390/math8050783 |
Reference:
|
[3] Amourah, A., Al-Hawary, T., Frasin, B. A.: Application of Chebyshev polynomials to certain class of bi-Bazilevič functions of order $\alpha +i\beta$.Afr. Mat. 32 (2021), 1059-1066. Zbl 1488.30030, MR 4293839, 10.1007/s13370-021-00881-x |
Reference:
|
[4] Behera, A., Panda, G. K.: On the square roots of triangular numbers.Fibonacci Q. 37 (1999), 98-105. Zbl 0962.11014, MR 1690458, 10.1080/00150517.1999.12428864 |
Reference:
|
[5] Brannan, D. A., (eds.), J. G. Clunie: Aspects of Contemporary Complex Analysis.Academic Press, London (1980). Zbl 0483.00007, MR 0623462 |
Reference:
|
[6] Brannan, D. A., Clunie, J., Kirwan, W. E.: Coefficient estimates for a class of star-like functions.Can. J. Math. 22 (1970), 476-485. Zbl 0197.35602, MR 0260994, 10.4153/CJM-1970-055-8 |
Reference:
|
[7] Davala, R. K., Panda, G. K.: On sum and ratio formulas for balancing numbers.J. Indian Math. Soc., New Ser. 82 (2015), 23-32. Zbl 1371.11038, MR 3290017 |
Reference:
|
[8] Frasin, B. A.: Coefficient inequalities for certain classes of Sakaguchi type functions.Int. J. Nonlinear Sci. 10 (2010), 206-211. Zbl 1216.30008, MR 2745244 |
Reference:
|
[9] Frontczak, R.: A note on hybrid convolutions involving balancing and Lucas-balancing numbers.Appl. Math. Sci. 12 (2018), 1201-1208. 10.12988/ams.2018.87111 |
Reference:
|
[10] Frontczak, R.: Sums of balancing and Lucas-balancing numbers with binomial coefficients.Int. J. Math. Anal. 12 (2018), 585-594. 10.12988/ijma.2018.81067 |
Reference:
|
[11] Frontczak, R.: On balancing polynomials.Appl. Math. Sci. 13 (2019), 57-66. 10.12988/ams.2019.812183 |
Reference:
|
[12] Keskin, R., Karaatlı, O.: Some new properties of balancing numbers and square triangular numbers.J. Integer Seq. 15 (2012), Articl ID 12.1.4, 13 pages. Zbl 1291.11030, MR 2872461 |
Reference:
|
[13] Komatsu, T., Panda, G. K.: On several kinds of sums of balancing numbers.Ars Comb. 153 (2020), 127-147. Zbl 1513.11047, MR 4253120 |
Reference:
|
[14] Lewin, M.: On a coefficient problem for bi-univalent functions.Proc. Am. Math. Soc. 18 (1967), 63-68. Zbl 0158.07802, MR 0206255, 10.1090/S0002-9939-1967-0206255-1 |
Reference:
|
[15] Netanyahu, E.: The minimal distance of the image boundary from the origin and the second coefficient of a univalent function in $\vert z\vert<1$.Arch. Ration. Mech. Anal. 32 (1969), 100-112. Zbl 0186.39703, MR 0235110, 10.1007/BF00247676 |
Reference:
|
[16] Owa, S., Sekine, T., Yamakawa, R.: Notes on Sakaguchi functions.Aust. J. Math. Anal. Appl. 3 (2006), Article ID 12, 7 pages. Zbl 1090.30024, MR 2223016 |
Reference:
|
[17] Owa, S., Sekine, T., Yamakawa, R.: On Sakaguchi type functions.Appl. Math. Comput. 187 (2007), 356-361. Zbl 1113.30018, MR 2323589, 10.1016/j.amc.2006.08.133 |
Reference:
|
[18] Patel, B. K., Irmak, N., Ray, P. K.: Incomplete balancing and Lucas-balancing numbers.Math. Rep., Buchar. 20 (2018), 59-72. Zbl 1399.11045, MR 3781687 |
Reference:
|
[19] Ray, P. K.: Some congruences for balancing and Lucas-balancing numbers and their applications.Integers 14 (2014), Article ID A08, 8 pages. Zbl 1284.11031, MR 3239589 |
Reference:
|
[20] Ray, P. K.: Balancing and Lucas-balancing sums by matrix methods.Math. Rep., Buchar. 17 (2015), 225-233. Zbl 1374.11024, MR 3375730 |
Reference:
|
[21] Ray, P. K.: On the properties of $k$-balancing numbers.Ain Shams Engin. J. 9 (2018), 395-402. 10.1016/j.asej.2016.01.014 |
Reference:
|
[22] Sakaguchi, K.: On a certain univalent mapping.J. Math. Soc. Japan 11 (1959), 72-75. Zbl 0085.29602, MR 0107005, 10.2969/jmsj/01110072 |
Reference:
|
[23] Shaba, T. G.: Subclass of bi-univalent functions satisfying subordinate conditions defined by Frasin differential operator.Turkish J. Ineq. 4 (2020), 50-58. |
Reference:
|
[24] Srivastava, H. M., Mishra, A. K., Gochhayat, P.: Certain subclasses of analytic and bi-univalent functions.Appl. Math. Lett. 23 (2010), 1188-1192. Zbl 1201.30020, MR 2665593, 10.1016/j.aml.2010.05.009 |
Reference:
|
[25] Vijayalakshmi, S. P., Bulut, S., Sudharsan, T. V.: Vandermonde determinant for a certain Sakaguchi type function in Limaçon domain.Asian-Eur. J. Math. 15 (2022), Article ID 2250212, 9 pages. Zbl 1504.30016, MR 4504278, 10.1142/S1793557122502126 |
Reference:
|
[26] Xu, Q.-H., Gui, Y.-C., Srivastava, H. M.: Coefficient estimates for a certain subclass of analytic and bi-univalent functions.Appl. Math. Lett. 25 (2012), 990-994. Zbl 1244.30033, MR 2902367, 10.1016/j.aml.2011.11.013 |
Reference:
|
[27] Xu, Q.-H., Xiao, H.-G., Srivastava, H. M.: A certain general subclass of analytic and bi-univalent functions and associated coefficient estimate problems.Appl. Math. Comput. 218 (2012), 11461-11465. Zbl 1284.30009, MR 2943990, 10.1016/j.amc.2012.05.034 |
Reference:
|
[28] Yousef, F., Amourah, A., Frasin, B. A., Bulboacă, T.: An avant-garde construction for subclasses of analytic bi-univalent functions.Axioms 11 (2022), Article ID 267, 8 pages. 10.3390/axioms11060267 |
. |