Previous |  Up |  Next

Article

Keywords:
oscillation; nonoscillation; nonlinear system of neutral differential equations; asymptotically stable; Banach's fixed point theorem
Summary:
This work deals with the analysis pertaining some dynamic behavior of vector solutions of first order two-dimensional neutral delay differential systems of the form $$ \frac {{\rm d}}{{\rm d}t} \begin {bmatrix} u(t)+pu(t-\tau )\\ v(t)+pv(t-\tau )\\ \end {bmatrix} = \begin {bmatrix} a & b \\ c & d \\ \end {bmatrix} \begin {bmatrix} u(t-\alpha )\\ v(t-\beta )\\ \end {bmatrix}. $$ The effort has been made to study $$ \frac {{\rm d}}{{\rm d}t} \begin {bmatrix} x(t)-p(t)h_{1}(x(t-\tau ))\\ y(t)-p(t)h_{2}(y(t-\tau )) \end {bmatrix} + \begin {bmatrix} a(t) & b(t)\\ c(t) & d(t) \end {bmatrix} \begin {bmatrix} f_{1}(x(t-\alpha ))\\ f_{2}(y(t-\beta )) \end {bmatrix} =0, $$ where $p,a,b,c,d,h_1,h_2,f_1,f_2 \in C(\mathbb {R},\mathbb {R})$; $\alpha ,\beta ,\tau \in \mathbb {R}^+$. We verify our results with the examples.
References:
[1] Erbe, L. H., Kong, Q., Zhang, B. G.: Oscillation Theory for Functional Differential Equations. Pure and Applied Mathematics, Marcel Dekker 190. Marcel Dekker, New York (1995). DOI 10.1201/9780203744727 | MR 1309905 | Zbl 0821.34067
[2] Grigorian, G. A.: Oscillatory criteria for the systems of two first-order linear differential equations. Rocky Mt. J. Math. 47 (2017), 1497-1524. DOI 10.1216/RMJ-2017-47-5-1497 | MR 3705762 | Zbl 1378.34052
[3] Györi, I., Ladas, G.: Oscillation Theory of Delay Differential Equations: With Applications. Oxford Mathematical Monographs. Clarendon Press, Oxford (1991). DOI 10.1093/oso/9780198535829.001.0001 | MR 1168471 | Zbl 0780.34048
[4] Mihalíková, B.: Asymptotic behaviour of solutions of two-dimensional neutral differential systems. Czech. Math. J. 53 (2003), 735-741. DOI 10.1023/B:CMAJ.0000024515.64004.7c | MR 2000065 | Zbl 1080.34555
[5] Naito, M.: Oscillation and nonoscillation for two-dimensional nonlinear systems of ordinary differential equations. Taiwanese J. Math. 27 (2023), 291-319. DOI 10.11650/tjm/221001 | MR 4563521 | Zbl 1521.34032
[6] Opluštil, Z.: Oscillation criteria for two-dimensional system of non-linear ordinary differential equations. Electron. J. Qual. Theory Differ. Equ. 2016 (2016), Article ID 52, 17 pages. DOI 10.14232/ejqtde.2016.1.52 | MR 3533262 | Zbl 1363.34098
Partner of
EuDML logo