Title: | The Picard-Lindelöf Theorem and continuation of solutions for measure differential equations (English) |
Author: | Beltritti, Gastón |
Author: | Demaria, Stefania |
Author: | Giubergia, Graciela |
Author: | Mazzone, Fernando |
Language: | English |
Journal: | Czechoslovak Mathematical Journal |
ISSN: | 0011-4642 (print) |
ISSN: | 1572-9141 (online) |
Volume: | 75 |
Issue: | 1 |
Year: | 2025 |
Pages: | 47-68 |
Summary lang: | English |
. | |
Category: | math |
. | |
Summary: | We obtain, by means of Banach's Fixed Point Theorem, convergence for the Picard iterations associated to a general nonlinear system of measure differential equations. We study the existence of left-continuous solutions defined on maximal intervals and we establish some properties of these maximal solutions. (English) |
Keyword: | measure differential equation |
Keyword: | Lebesgue-Stieltjes integral |
Keyword: | fixed point theory |
Keyword: | maximal solution |
MSC: | 34A36 |
MSC: | 34A37 |
MSC: | 34A38 |
MSC: | 34A40 |
DOI: | 10.21136/CMJ.2023.0236-22 |
. | |
Date available: | 2025-03-11T15:55:48Z |
Last updated: | 2025-03-19 |
Stable URL: | http://hdl.handle.net/10338.dmlcz/152896 |
. | |
Reference: | [1] Ashordia, M.: Lyapunov stability of systems of linear generalized ordinary differential equations.Comput. Math. Appl. 50 (2005), 957-982. Zbl 1090.34043, MR 2165650, 10.1016/j.camwa.2004.04.041 |
Reference: | [2] Bainov, D., Simeonov, P.: Impulsive Differential Equations: Periodic Solutions and Applications.Pitman Monographs and Surveys in Pure and Applied Mathematics 66. John Wiley & Sons, New York (1993). Zbl 0815.34001, MR 1266625, 10.1201/9780203751206 |
Reference: | [3] Bartle, R. G.: A general bilinear vector integral.Stud. Math. 15 (1956), 337-352. Zbl 0070.28102, MR 0080721, 10.4064/sm-15-3-337-352 |
Reference: | [4] Bedyuk, N. V., Yablonskii, O. L.: Nonautonomous differential equations in the algebra of new generalized functions.Differ. Equ. 45 (2009), 6-17. Zbl 1177.34010, MR 2597089, 10.1134/S0012266109010029 |
Reference: | [5] Bedziuk, N., Yablonski, A.: Solutions of nonlinear differential equations.NoDEA, Nonlinear Differ. Equ. Appl. 17 (2010), 249-270. Zbl 1196.34021, MR 2639154, 10.1007/s00030-009-0052-7 |
Reference: | [6] Benchohra, M., Henderson, J., Ntouyas, S.: Impulsive Differential Equations and Inclusions.Contemporary Mathematics and Its Applications 2. Hindawi, New York (2006). Zbl 1130.34003, MR 2322133, 10.1155/9789775945501 |
Reference: | [7] Bonotto, E. M., Federson, M., (eds.), J. G. Mesquita: Generalized Ordinary Differential Equations in Abstract Spaces and Applications.John Wiley & Sons, Hoboken (2021). Zbl 1475.34001, MR 4485099, 10.1002/9781119655022 |
Reference: | [8] Brogliato, B.: Nonsmooth Mechanics: Models, Dynamics and Control.Communications and Control Engineering. Springer, Cham (2016). Zbl 1333.74002, MR 3467591, 10.1007/978-3-319-28664-8 |
Reference: | [9] Burk, F. E.: A Garden of Integrals.The Dolciani Mathematical Expositions 31. Mathematical Association of America, Washington (2007). Zbl 1127.26300, MR 2311537, 10.7135/UPO9781614442097 |
Reference: | [10] Buttazzo, G., Giaquinta, M., Hildebrandt, S.: One-Dimensional Variational Problems: An Introduction.Oxford Lecture Series in Mathematics and its Applications 15. Clarendon Press, Oxford (1998). Zbl 0915.49001, MR 1694383 |
Reference: | [11] Cao, Y., Sun, J.: Existence of solutions for semilinear measure driven equations.J. Math. Anal. Appl. 425 (2015), 621-631. Zbl 1304.34015, MR 3303881, 10.1016/j.jmaa.2014.12.042 |
Reference: | [12] Carter, M., Brunt, B. van: The Lebesgue-Stieltjes Integral: A Practical Introduction.Undergraduate Texts in Mathematics. Springer, New York (2000). Zbl 0948.28001, MR 1759133, 10.1007/978-1-4612-1174-7 |
Reference: | [13] Cichoń, M., Satco, B. R.: Measure differential inclusions -- between continuous and discrete.Adv. Difference Equ. 2014 (2014), Article ID 56, 18 pages. Zbl 1350.49014, MR 3348625, 10.1186/1687-1847-2014-56 |
Reference: | [14] Coddington, E. A., Levinson, N.: Theory of Ordinary Differential Equations.McGraw-Hill, New York (1955). Zbl 0064.33002, MR 0069338 |
Reference: | [15] Das, P. C., Sharma, R. R.: Existence and stability of measure differential equations.Czech. Math. J. 22 (1972), 145-158. Zbl 0241.34070, MR 0304815, 10.21136/CMJ.1972.101082 |
Reference: | [16] Das, P. C., Sharma, R. R.: Some Stieltjes integral inequalities.J. Math. Anal. Appl. 73 (1980), 423-433. Zbl 0432.26008, MR 0563993, 10.1016/0022-247X(80)90288-7 |
Reference: | [17] J. Diestel, J. J. Uhl, Jr.: Vector Measures.Mathematical Surveys 15. AMS, Providence (1977). Zbl 0369.46039, MR 0453964, 10.1090/surv/015 |
Reference: | [18] Evans, L. C., Gariepy, R. F.: Measure Theory and Fine Properties of Functions.Studies in Advanced Mathematics. CRC Press, Boca Raton (1992). Zbl 0804.28001, MR 1158660, 10.1201/b18333 |
Reference: | [19] Filippov, A. F.: Differential Equations with Discontinuous Righthand Sides: Control Systems.Mathematics and Its Applications: Soviet Series 18. Kluwer Academic, Dordrecht (1988). Zbl 0664.34001, MR 1028776, 10.1007/978-94-015-7793-9 |
Reference: | [20] Folland, G. B.: Real Analysis: Modern Techniques and Their Applications.Pure and Applied Mathematics. John Wiley & Sons, New York (1999). Zbl 0924.28001, MR 1681462 |
Reference: | [21] Hewitt, E., Stromberg, K.: Real and Abstract Analysis: A Modern Treatment of the Theory of Functions of a Real Variable.Graduate Texts in Mathematics 25. Springer, New York (1975). Zbl 0307.28001, MR 0367121, 10.1007/978-3-662-29794-0 |
Reference: | [22] Khamsi, M. A., Kozlowski, W. M.: Fixed Point Theory in Modular Function Spaces.Birkhäuser/Springer, Cham (2015). Zbl 1318.47002, MR 3329163, 10.1007/978-3-319-14051-3 |
Reference: | [23] Kumar, S., Agarwal, R. P.: Existence of solution for non-autonomous semilinear measure driven equations.Differ. Equ. Appl. 12 (2020), 313-322. Zbl 1474.34407, MR 4155961, 10.7153/dea-2020-12-20 |
Reference: | [24] Kurtz, D. S., Swartz, C. W.: Theories of Integration: The Integrals of Riemann, Lebesgue, Henstock-Kurzweil, and McShane.Series in Real Analysis 9. World Scientific, River Edge (2004). Zbl 1072.26005, MR 2081182, 10.1142/5538 |
Reference: | [25] Kurzweil, J.: Henstock-Kurzweil Integration: Its Relation to Topological Vector Spaces.Series in Real Analysis 7. World Scientific, Singapore (2000). Zbl 0954.28001, MR 1763305, 10.1142/4333 |
Reference: | [26] Kurzweil, J.: Integration between the Lebesgue Integral and the Henstock-Kurzweil Integral: Its Relation to Local Convex Vector Spaces.Series in Real Analysis 8. World Scientific, Singapore (2002). Zbl 1018.26005, MR 1908744, 10.1142/5005 |
Reference: | [27] Kurzweil, J.: Generalized Ordinary Differential Equations: Not Absolutely Continuous Solutions.Series in Real Analysis 11. World Scientific, Hackensack (2012). Zbl 1248.34001, MR 2906899, 10.1142/7907 |
Reference: | [28] Lakshmikantham, V., Bainov, D. D., Simeonov, P. S.: Theory of Impulsive Differential Equations.Series in Modern Applied Mathematics 6. World Scientific, Singapore (1989). Zbl 0719.34002, MR 1082551, 10.1142/0906 |
Reference: | [29] G. A. Leonov, H. Nijmeijer, A., A. Fradkov (eds.): Dynamics and Control of Hybrid Mechanical Systems.World Scientific Series on Nonlinear Science. Series B: Special Theme Issues and Proceedings 14. World Scientific, Hackensack (2010). Zbl 1183.93003, 10.1142/7421 |
Reference: | [30] Meyer, C. D.: Matrix Analysis and Applied Linear Algebra.SIAM, Philadelphia (2000). Zbl 0962.15001, MR 1777382 |
Reference: | [31] Moreau, J. J.: Unilateral contact and dry friction in finite freedom dynamics.Nonsmooth Mechanics and Applications International Centre for Mechanical Sciences. Springer, Wien (1988), 1-82. Zbl 0703.73070, 10.1007/978-3-7091-2624-0_1 |
Reference: | [32] Pandit, S. G., Deo, S. G.: Differential Systems Involving Impulses.Lecture Notes in Mathematics 954. Springer, Berlin (1982). Zbl 0539.34001, MR 0674119, 10.1007/BFb0067476 |
Reference: | [33] Persson, J.: Regularization of nonlinear measure differential equations.Matematiche 44 (1989), 113-130. Zbl 0715.34005, MR 1093156 |
Reference: | [34] Saks, S.: Theory of the Integral.Dover, New York (1964). Zbl 1196.28001, MR 0167578 |
Reference: | [35] Samoilenko, A. M., Perestyuk, N. A.: Impulsive Differential Equations.World Scientific Series on Nonlinear Science. Series A. 14. World Scientific, Singapore (1995). Zbl 0837.34003, MR 1355787, 10.1142/2892 |
Reference: | [36] Schmaedeke, W. W.: Optimal control theory for nonlinear vector differential equations containing measures.J. Soc. Ind. Appl. Math., Ser. A, Control 3 (1965), 231-280. Zbl 0161.29203, MR 0189870, 10.1137/0303019 |
Reference: | [37] Schwabik, Š., Tvrdý, M., Vejvoda, O.: Differential and Integral Equations: Boundary Value Problems and Adjoints.Academia, Praha (1979). Zbl 0417.45001, MR 0542283 |
Reference: | [38] Slavík, A.: Well-posedness results for abstract generalized differential equations and measure functional differential equations.J. Differ. Equations 259 (2015), 666-707. Zbl 1319.34116, MR 3338315, 10.1016/j.jde.2015.02.013 |
Reference: | [39] Slyusarchuk, V. E.: General theorems on the existence and uniqueness of solutions to impulsive differential equations.Ukr. Math. J. 52 (2000), 1094-1106. Zbl 0976.34010, MR 1817324, 10.1023/A:1005281717641 |
Reference: | [40] Stamov, G. T.: Almost Periodic Solutions of Impulsive Differential Equations.Lecture Notes in Mathematics 2047. Springer, Berlin (2012). Zbl 1255.34001, MR 2934087, 10.1007/978-3-642-27546-3 |
Reference: | [41] Stamova, I., Stamov, G.: Applied Impulsive Mathematical Models.CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC. Springer, Cham (2016). Zbl 1355.34004, MR 3496133, 10.1007/978-3-319-28061-5 |
Reference: | [42] Tanwani, A., Brogliato, B., Prieur, C.: Stability notions for a class of nonlinear systems with measure controls.Math. Control Signals Syst. 27 (2015), 245-275. Zbl 1327.93330, MR 3343941, 10.1007/s00498-015-0140-7 |
Reference: | [43] Wouw, N. van de, Leine, R. I.: Tracking control for a class of measure differential inclusions.47th IEEE Conference on Decision and Control IEEE, Philadelphia (2008), 2526-2532. 10.1109/CDC.2008.4738683 |
Reference: | [44] Yablonski, A.: Differential equations with generalized coefficients.Nonlinear Anal., Theory Methods Appl., Ser. A 63 (2005), 171-197. Zbl 1089.34006, MR 2165495, 10.1016/j.na.2005.03.108 |
Reference: | [45] Zavalishchin, S. T., Sesekin, A. N.: Dynamic Impulse Systems: Theory and Applications.Mathematics and its Applications (Dordrecht) 394. Kluwer, Dordrecht (1997). Zbl 0880.46031, MR 1441079, 10.1007/978-94-015-8893-5 |
Reference: | [46] Ziemer, W. P.: Weakly Differentiable Functions: Sobolev Spaces and Functions of Bounded Variation.Graduate Texts in Mathematics 120. Springer, Berlin (1989). Zbl 0692.46022, MR 1014685, 10.1007/978-1-4612-1015-3 |
. |
Fulltext not available (moving wall 24 months)