Previous |  Up |  Next

Article

Title: The topology of the space of $\mathcal {HK}$ integrable functions in ${\mathbb R}^n$ (English)
Author: Boonpogkrong, Varayu
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 75
Issue: 1
Year: 2025
Pages: 85-102
Summary lang: English
.
Category: math
.
Summary: It is known that there is no natural Banach norm on the space $\mathcal {HK}$ of $n$-dimensional Henstock-Kurzweil integrable functions on $[a,b]$. We show that the $\mathcal {HK}$ space is the uncountable union of Fréchet spaces $\mathcal {HK}(X)$. On each $\mathcal {HK}(X)$ space, an $F$-norm $\|{\cdot }\|^X$ is defined. A $\|{\cdot }\|^X$-convergent sequence is equivalent to a control-convergent sequence. Furthermore, an $F$-norm is also defined for a $\|{\cdot }\|^X$-continuous linear operator. Hence, many important results in functional analysis hold for the $\mathcal {HK}(X)$ space. It is well-known that every control-convergent sequence in the $\mathcal {HK}$ space always belongs to a $\mathcal {HK}(X)$ space. Hence, results in functional analysis can be applied to the $\mathcal {HK}$ space. Compact linear operators and the existence of solutions to integral equations are also given. The results for the one-dimensional case have been discussed in V. Boonpogkrong (2022). Proofs of many results for the $n$-dimensional and the one-dimensional cases are similar. (English)
Keyword: compact operator
Keyword: integral equation
Keyword: controlled convergence
Keyword: Henstock-Kurzweil integral in $\mathbb{R} ^n$
MSC: 26A39
MSC: 26A42
DOI: 10.21136/CMJ.2023.0313-22
.
Date available: 2025-03-11T15:57:12Z
Last updated: 2025-03-19
Stable URL: http://hdl.handle.net/10338.dmlcz/152898
.
Reference: [1] Ang, D. D., Schmitt, K., Vy, L. K.: A multidimensional analogue of the Denjoy-Perron- Henstock-Kurzweil integral.Bull. Belg. Math. Soc. - Simon Stevin 4 (1997), 355-371. Zbl 0929.26009, MR 1457075, 10.36045/bbms/1105733252
Reference: [2] Boonpogkrong, V.: Compact operators and integral equation in the $\Cal{HK}$ space.Czech. Math. J. 72 (2022), 239-257. Zbl 07511564, MR 4389117, 10.21136/CMJ.2021.0447-20
Reference: [3] Chew, T. S., Lee, P. Y.: The topology of the space of Denjoy integrable functions.Bull. Aust. Math. Soc. 42 (1990), 517-524. Zbl 0715.26004, MR 1083288, 10.1017/S0004972700028689
Reference: [4] Köthe, G.: Topological Vector Spaces. I.Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen 159. Springer, Berlin (1969). Zbl 0179.17001, MR 0248498, 10.1007/978-3-642-64988-2
Reference: [5] Lee, P.-Y.: Lanzhou Lectures on Henstock Integration.Series in Real Analysis 2. World Scientific, London (1989). Zbl 0699.26004, MR 1050957, 10.1142/0845
Reference: [6] Lee, P. Y.: Multiple integral, Chapter 7.Available at { \let \relax \brokenlink{https://www.researchgate.net/publication/370871440_Lanzhou_Lectures_on_}{Henstock_Integration_Chapter_7_Multiple_integrals}}.
Reference: [7] Lee, T. Y.: Henstock-Kurzweil Integration on Euclidean Spaces.Series in Real Analysis 12. World Scientific, Hackensack (2011). Zbl 1246.26002, MR 2789724, 10.1142/7933
Reference: [8] Morris, S. A., Noussair, E. S.: The Schauder-Tychonoff fixed point theorem and applications.Mat. Čas., Slovensk. Akad. Vied 25 (1975), 165-172. Zbl 0304.47049, MR 0397486
Reference: [9] Royden, H. L.: Real Analysis.Macmillan, New York (1988). Zbl 0704.26006, MR 1013117
Reference: [10] Swartz, C.: A gliding hump property for the Henstock-Kurzweil integral.Southeast Asian Bull. Math. 22 (1998), 437-443. Zbl 0935.28004, MR 1811186
Reference: [11] Talvila, E.: The distributional Denjoy integral.Real Anal. Exch. 33 (2008), 51-82. Zbl 1154.26011, MR 2402863, 10.14321/realanalexch.33.1.0051
Reference: [12] Thomson, B. S.: The space of Denjoy-Perron integrable functions.Real Anal. Exch. 25 (2000), 711-726. Zbl 1016.26010, MR 1778525, 10.2307/44154028
.

Fulltext not available (moving wall 24 months)

Partner of
EuDML logo