Previous |  Up |  Next

Article

Title: A necessary condition for HK-integrability of the Fourier sine transform function (English)
Author: Arredondo, Juan H.
Author: Bernal, Manuel
Author: Morales, Maria G.
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 75
Issue: 1
Year: 2025
Pages: 69-84
Summary lang: English
.
Category: math
.
Summary: The paper is concerned with integrability of the Fourier sine transform function when $f\in {\rm BV}_0(\mathbb {R} )$, where ${\rm BV}_0(\mathbb {R} )$ is the space of bounded variation functions vanishing at infinity. It is shown that for the Fourier sine transform function of $f$ to be integrable in the Henstock-Kurzweil sense, it is necessary that $f /x \in L^1(\mathbb {R})$. We prove that this condition is optimal through the theoretical scope of the Henstock-Kurzweil integration theory. (English)
Keyword: Fourier transform
Keyword: Henstock-Kurzweil integral
Keyword: bounded variation function
MSC: 26A39
MSC: 26A45
MSC: 42A38
DOI: 10.21136/CMJ.2023.0257-22
.
Date available: 2025-03-11T15:56:37Z
Last updated: 2025-03-19
Stable URL: http://hdl.handle.net/10338.dmlcz/152897
.
Reference: [1] Arredondo, J. H., Bernal, M., Morales, M. G.: Fourier analysis with generalized integration.Mathematics 8 (2020), Article ID 1199, 16 pages. 10.3390/math8071199
Reference: [2] Arredondo, J. H., Mendoza, F. J., Reyes, A.: On the norm continuity of the HK-Fourier transform.Electron. Res. Announc. Math. Sci. 25 (2018), 36-47. Zbl 1401.26019, MR 3810181, 10.3934/era.2018.25.005
Reference: [3] Arredondo, J. H., Reyes, A.: Interpolation theory for the HK-Fourier transform.Rev. Unión Mat. Argent. 62 (2021), 401-413. Zbl 1487.42008, MR 4363338, 10.33044/revuma.1911
Reference: [4] Bartle, R. G.: A Modern Theory of Integration.Graduate Studies in Mathematics 32. AMS, Providence (2001). Zbl 0968.26001, MR 1817647, 10.1090/gsm/032
Reference: [5] Bell, R. J.: Introductory Fourier Transform Spectroscopy.Academic Press, New York (1972). 10.1016/B978-0-12-085150-8.X5001-3
Reference: [6] Bloomfield, P.: Fourier Analysis of Time Series: An Introduction.Wiley Series in Probability and Statistics: Applied Probability and Statistics. John Wiley & Sons, Chichester (2000). Zbl 0994.62093, MR 1884963, 10.1002/0471722235
Reference: [7] Bracewell, R. N.: The Fourier Transform and Its Applications.McGraw-Hill, New York (2000). Zbl 0561.42001, MR 0924577
Reference: [8] Chanda, B., Majumder, D. Dutta: Digital Image Processing and Analysis.PHI Learning, New Delhi (2011).
Reference: [9] Ferraro, J. R., Basile, L. J.: Fourier Transform Infrared Spectra: Applications to Chemical Systems. Vol. 1.Academic Press, New York (1978). 10.1016/C2009-0-22072-1
Reference: [10] Folland, G. B.: Real Analysis: Modern Techniques and Their Applications.Pure and Applied Mathematics. John Wiley & Sons, New York (1984). Zbl 0549.28001, MR 0767633
Reference: [11] Folland, G. B.: Fourier Analysis and Its Applications.Wadsworth & Brooks/Cole Advanced Books & Software, Pacific Grove (1992). Zbl 0786.42001, MR 1145236
Reference: [12] Gordon, R. A.: The Integrals of Lebesgue, Denjoy, Perron, and Henstock.Graduate Studies in Mathematics 4. AMS, Providence (1994). Zbl 0807.26004, MR 1288751, 10.1090/gsm/004
Reference: [13] Gray, R. M., Goodman, J. W.: Fourier Transforms: An Introduction for Engineers.The Kluwer International Series in Engineering and Computer Science 322. Kluwer Academic, Dordrecht (1995). Zbl 0997.42500, 10.1007/978-1-4615-2359-8
Reference: [14] Lee, P.-Y.: Lanzhou Lectures on Henstock Integration.Series in Real Analysis 2. World Scientific, London (1989). Zbl 0699.26004, MR 1050957, 10.1142/0845
Reference: [15] Liflyand, E.: Asymptotics of the Fourier sine transform of a function of bounded variation.Math. Notes 100 (2016), 93-99. Zbl 1362.42013, MR 3588831, 10.1134/S0001434616070087
Reference: [16] Liflyand, E.: Integrability spaces for the Fourier transform of a function of bounded variation.J. Math. Anal. Appl. 436 (2016), 1082-1101. Zbl 1341.42009, MR 3446998, 10.1016/j.jmaa.2015.12.042
Reference: [17] Liflyand, E.: The Fourier transform of a function of bounded variation: Symmetry and asymmetry.J. Fourier Anal. Appl. 24 (2018), 525-544. Zbl 1440.42019, MR 3776333, 10.1007/s00041-017-9530-1
Reference: [18] Liflyand, E.: Functions of Bounded Variation and Their Fourier Transforms.Applied and Numerical Harmonic Analysis. Birkhäuser, Cham (2019). Zbl 1418.42001, MR 3929690, 10.1007/978-3-030-04429-9
Reference: [19] McLeod, R. M.: The Generalized Riemann Integral.The Carus Mathematical Monographs 20. Mathematical Association of America, Washington (1980). Zbl 0486.26005, MR 0588510, 10.5948/UPO9781614440208
Reference: [20] McShane, E. J.: Integration.Princeton Mathematical Series 7. Princeton University Press, Princeton (1947). Zbl 0033.05302, MR 0010606, 10.1515/9781400877812
Reference: [21] Torres, F. J. Mendoza, Marcías, M. G. Morales, Reyna, J. A. Escamilla, Ruiz, J. H. Arredondo: Several aspects around the Riemann-Lebesgue lemma.J. Adv. Res. Pure Math. 5 (2013), 33-46. MR 3041342, 10.5373/jarpm.1458.052712
Reference: [22] Monteiro, G. A., Slavík, A., Tvrdý, M.: Kurzweil-Stieltjes Integral: Theory and Applications.Series in Real Analysis 15. World Scientific, Hackensack (2019). Zbl 1437.28001, MR 3839599, 10.1142/9432
Reference: [23] Morales, M. G., Arredondo, J. H., Mendoza, F. J.: An extension of some properties for the Fourier transform operator on $L^p(\Bbb R)$ spaces.Rev. Unión Mat. Argent. 57 (2016), 85-94. Zbl 1357.43001, MR 3583297
Reference: [24] Peters, T. M., (eds.), J. Williams: The Fourier Transform in Biomedical Engineering.Applied and Numerical Harmonic Analysis. Birkhäuser, Basel (1998). Zbl 0910.92022, MR 1634301, 10.1007/978-1-4612-0637-8
Reference: [25] Pinsky, M. A.: Introduction to Fourier Analysis and Wavelets.Brooks/Cole Series in Advanced Mathematics. Brooks/Cole, Pacific Grove (2002). Zbl 1065.42001, MR 2100936, 10.1090/gsm/102
Reference: [26] Rudin, W.: Real and Complex Analysis.McGraw-Hill, New York (1987). Zbl 0925.00005, MR 0924157
Reference: [27] Ruzhansky, M., Tikhonov, S.: Some problems in Fourier analysis and approximation theory.Methods of Fourier Analysis and Approximation Theory Applied and Numerical Harmonic Analysis. Birkhäuser, Basel 2016 1-19. Zbl 1343.42001, MR 3497695, 10.1007/978-3-319-27466-9_1
Reference: [28] Sánchez-Perales, S., Torres, F. J. Mendoza, Reyna, J. A. Escamilla: Henstock-Kurzweil integral transforms.Int. J. Math. Math. Sci. 2012 (2012), Article ID 209462, 11 pages. Zbl 1253.44006, MR 2983789, 10.1155/2012/209462
Reference: [29] Titchmarsh, E. C.: Introduction to the Theory of Fourier Integrals.Clarendon Press, Oxford (1937). Zbl 0017.40404, MR 0942661
.

Fulltext not available (moving wall 24 months)

Partner of
EuDML logo