Previous |  Up |  Next

Article

Title: Integration and decompositions of weak$^*$-integrable multifunctions (English)
Author: Musiał, Kazimierz
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 75
Issue: 1
Year: 2025
Pages: 141-156
Summary lang: English
.
Category: math
.
Summary: Conditions guaranteeing Pettis integrability of a Gelfand integrable multifunction and a decomposition theorem for the Henstock-Kurzweil-Gelfand integrable multifunctions are presented. (English)
Keyword: Gelfand integral
Keyword: Pettis integral
Keyword: Henstock-Kurzweil-Gelfand integral; Denjoy-Khintchine-Gelfand integral
Keyword: Henstock-Kurzweil-Pettis integral
Keyword: Denjoy-Khintchine-Pettis integral
Keyword: multifunction
Keyword: decomposition
MSC: 26A39
MSC: 28B20
MSC: 46G10
DOI: 10.21136/CMJ.2023.0502-22
.
Date available: 2025-03-11T15:59:07Z
Last updated: 2025-03-19
Stable URL: http://hdl.handle.net/10338.dmlcz/152901
.
Reference: [1] Bongiorno, B., Piazza, L. Di, Musia{ł}, K.: A decomposition theorem for the fuzzy Henstock integral.Fuzzy Sets Syst. 200 (2012), 36-47. Zbl 1253.28010, MR 2927843, 10.1016/j.fss.2011.12.006
Reference: [2] Candeloro, D., Piazza, L. Di, Musia{ł}, K., Sambucini, A. R.: Gauge integrals and selections of weakly compact valued multifunctions.J. Math. Anal. Appl. 441 (2016), 293-308. Zbl 1339.28016, MR 3488058, 10.1016/j.jmaa.2016.04.009
Reference: [3] Candeloro, D., Piazza, L. Di, Musia{ł}, K., Sambucini, A. R.: Relations among gauge and Pettis integrals for $cwk(X)$-valued multifunctions.Ann. Mat. Pura Appl. (4) 197 (2018), 171-183. Zbl 1400.28020, MR 3747527, 10.1007/s10231-017-0674-z
Reference: [4] Candeloro, D., Piazza, L. Di, Musia{ł}, K., Sambucini, A. R.: Some new results on integration for multifunction.Ric. Mat. 67 (2018), 361-372. Zbl 1402.28010, MR 3864781, 10.1007/s11587-018-0376-x
Reference: [5] Candeloro, D., Piazza, L. Di, Musia{ł}, K., Sambucini, A. R.: Integration of multifunctions with closed convex values in arbitrary Banach spaces.J. Convex Anal. 27 (2020), 1233-1246. Zbl 1461.28007, MR 4183407
Reference: [6] Candeloro, D., Piazza, L. Di, Musia{ł}, K., Sambucini, A. R.: Multi-integrals of finite variation.Boll. Unione Mat. Ital. 13 (2020), 459-468. Zbl 1457.28010, MR 4172946, 10.1007/s40574-020-00217-w
Reference: [7] Cascales, B., Kadets, V., Rodríguez, J.: The Gelfand integral for multi-valued functions.J. Convex Anal. 18 (2011), 873-895. Zbl 1252.46031, MR 2858100
Reference: [8] Piazza, L. Di, Musia{ł}, K.: Set-valued Kurzweil-Henstock-Pettis integral.Set-Valued Anal. 13 (2005), 167-179. Zbl 1100.28008, MR 2148134, 10.1007/s11228-004-0934-0
Reference: [9] Piazza, L. Di, Musia{ł}, K.: A decomposition theorem for compact-valued Henstock integral.Monatsh. Math. 148 (2006), 119-126. Zbl 1152.28016, MR 2235359, 10.1007/s00605-005-0376-2
Reference: [10] Piazza, L. Di, Musia{ł}, K.: Characterizations of Kurzweil-Henstock-Pettis integrable functions.Stud. Math. 176 (2006), 159-176. Zbl 1118.26008, MR 2264361, 10.4064/sm176-2-4
Reference: [11] Piazza, L. Di, Musia{ł}, K.: A decomposition of Henstock-Kurzweil-Pettis integrable multifunctions.Vector Measures, Integration and Related Topics Operator Theory: Advances and Applications 201. Birkhäuser, Basel (2010), 171-182. Zbl 1248.28019, MR 2743985, 10.1007/978-3-0346-0211-2_16
Reference: [12] Piazza, L. Di, Musia{ł}, K.: Henstock-Kurzweil-Pettis integrability of compact valued multifunctions with values in an arbitrary Banach space.J. Math. Anal. Appl. 408 (2013), 452-464. Zbl 1309.28012, MR 3085043, 10.1016/j.jmaa.2013.05.073
Reference: [13] Piazza, L. Di, Musia{ł}, K.: Relations among Henstock, McShane and Pettis integrals for multifunctions with compact convex values.Monatsh. Math. 173 (2014), 459-470. Zbl 1293.28006, MR 3177941, 10.1007/s00605-013-0594-y
Reference: [14] Piazza, L. Di, Musia{ł}, K.: Decompositions of weakly compact valued integrable multifunctions.Mathematics 8 (2020), Article ID 863, 13 pages. 10.3390/math8060863
Reference: [15] Fremlin, D. H., Talagrand, M.: A decomposition theorem for additive set-functions, with applications to Pettis integrals and ergodic means.Math. Z. 168 (1979), 117-142. Zbl 0393.28005, MR 0544700, 10.1007/BF01214191
Reference: [16] Gordon, R. A.: The Denjoy extension of the Bochner, Pettis, and Dunford integrals.Stud. Math. 92 (1989), 73-91. Zbl 0681.28006, MR 0984851, 10.4064/sm-92-1-73-91
Reference: [17] Gordon, R. A.: The Integrals of Lebesgue, Denjoy, Perron, and Henstock.Graduate Studies in Mathematics 4. AMS, Providence (1994). Zbl 0807.26004, MR 1288751, 10.1090/gsm/004
Reference: [18] Hu, S., Papageorgiou, N. S.: Handbook of Multivalued Analysis. I. Theory.Mathematics and its Applications (Dordrecht) 419. Kluwer Academic, Dordrecht (1997). Zbl 0887.47001, MR 1485775
Reference: [19] Kuratowski, K., Ryll-Nardzewski, C.: A general theorem on selectors.Bull. Acad. Pol. Sci., Sér. Sci. Math. Astron. Phys. 13 (1965), 397-403. Zbl 0152.21403, MR 0188994
Reference: [20] Musia{ł}, K.: The weak Radon-Nikodým property of Banach spaces.Stud. Math. 64 (1979), 151-173. Zbl 0405.46015, MR 0537118, 10.4064/sm-64-2-151-174
Reference: [21] Musia{ł}, K.: Topics in the theory of Pettis integration.Rend. Ist. Mat. Univ. Trieste 23 (1991), 177-262. Zbl 0798.46042, MR 1248654
Reference: [22] Musia{ł}, K.: Pettis integral.Handbook of Measure Theory. I North-Holland, Amsterdam (2002), 531-586. Zbl 1043.28010, MR 1954622, 10.1016/B978-044450263-6/50013-0
Reference: [23] Musia{ł}, K.: Pettis integrability of multifunctions with values in arbitrary Banach spaces.J. Convex Anal. 18 (2011), 769-810. Zbl 1245.28011, MR 2858094
Reference: [24] Musia{ł}, K.: Approximation of Pettis integrable multifunctions with values in arbitrary Banach spaces.J. Convex Anal. 20 (2013), 833-870. Zbl 1284.28006, MR 3136603
Reference: [25] Musia{ł}, K.: Gelfand integral of multifunctions.J. Convex Anal. 21 (2014), 1193-1200. Zbl 1320.28021, MR 3331215
Reference: [26] Musia{ł}, K.: A decomposition theorem for Banach space valued fuzzy Henstock integral.Fuzzy Sets Syst. 259 (2015), 21-28. Zbl 1335.28005, MR 3278742, 10.1016/j.fss.2014.03.012
Reference: [27] Musia{ł}, K.: Multimeasures with values in conjugate Banach spaces and the Weak Radon-Nikodým property.J. Convex Anal. 28 (2021), 879-902. Zbl 07470555, MR 4374324
Reference: [28] Neveu, J.: Bases mathématiques du calcul des probabilités.Masson et CIE, Paris (1964), French. Zbl 0137.11203, MR 0198504
Reference: [29] Talagrand, M.: Pettis Integral and Measure Theory.Memoirs of the American Mathematical Society 307. AMS, Providence (1984). Zbl 0582.46049, MR 0756174, 10.1090/memo/0307
.

Fulltext not available (moving wall 24 months)

Partner of
EuDML logo