Previous |  Up |  Next

Article

Title: A roller coaster approach to integration and Peano's existence theorem (English)
Author: López Pouso, Rodrigo
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 75
Issue: 1
Year: 2025
Pages: 157-177
Summary lang: English
.
Category: math
.
Summary: This is a didactic proposal on how to introduce the Newton integral in just three or four sessions in elementary courses. Our motivation for this paper were Talvila's work on the continuous primitive integral and Koliha's general approach to the Newton integral. We introduce it independently of any other integration theory, so some basic results require somewhat nonstandard proofs. As an instance, showing that continuous functions on compact intervals are Newton integrable (or, equivalently, that they have primitives) cannot lean on indefinite Riemann integrals. Remarkably, there is a very old proof (without integrals) of a more general result, and it is precisely that of Peano's existence theorem for continuous nonlinear ODEs, published in 1886. Some elements in Peano's original proof lack rigor, and that is why his proof has been criticized and revised several times. However, modern proofs are based on integration and do not use Peano's original ideas. In this note we provide an updated correct version of Peano's original proof, which obviously contains the proof that continuous functions have primitives, and it is also worthy of remark because it does not use the Ascoli-Arzelà theorem, uniform continuity, or any integration theory. (English)
Keyword: primitive
Keyword: Newton integral
Keyword: Peano's existence theorem
MSC: 26A27
MSC: 26A36
MSC: 26A39
DOI: 10.21136/CMJ.2023.0514-22
.
Date available: 2025-03-11T15:59:51Z
Last updated: 2025-03-19
Stable URL: http://hdl.handle.net/10338.dmlcz/152902
.
Reference: [1] Bendová, H., Malý, J.: An elementary way to introduce a Perron-like integral.Ann. Acad. Sci. Fenn., Math. 36 (2011), 153-164. Zbl 1225.26016, MR 2797688, 10.5186/aasfm.2011.3609
Reference: [2] Bongiorno, B.: A new integral for the problem of antiderivatives.Matematiche 51 (1996), 299-313 Italian. Zbl 0929.26007, MR 1488074
Reference: [3] Bongiorno, B., Piazza, L. Di, Preiss, D.: A constructive minimal integral which includes Lebesgue integrable functions and derivatives.J. Lond. Math. Soc., II. Ser. 62 (2000), 117-126. Zbl 0980.26006, MR 1771855, 10.1112/S0024610700008905
Reference: [4] Bruckner, A. M., Fleissner, R. J., Foran, J.: The minimal integral which includes Lebesgue integrable functions and derivatives.Colloq. Math. 50 (1986), 289-293. Zbl 0604.26006, MR 0857865, 10.4064/cm-50-2-289-293
Reference: [5] Černý, I., Rokyta, M.: Differential and Integral Calculus of One Real Variable.Karolinum, Prague (1998).
Reference: [6] Piazza, L. Di: A Riemann-type minimal integral for the classical problem of primitives.Rend. Ist. Mat. Univ. Trieste 34 (2002), 143-153. Zbl 1047.26005, MR 2013947
Reference: [7] Dow, M. A., Výborný, R.: Elementary proofs of Peano's existence theorem.J. Aust. Math. Soc. 15 (1973), 366-372. Zbl 0272.34002, MR 0335905, 10.1017/S1446788700013276
Reference: [8] Gardner, C.: Another elementary proof of Peano's existence theorem.Am. Math. Mon. 83 (1976), 556-560. Zbl 0349.34002, MR 0425221, 10.2307/2319357
Reference: [9] Goodman, G. S.: Subfunctions and the initial-value problem for differential equations satisfying Carathéodory's hypotheses.J. Differ. Equations 7 (1970), 232-242. Zbl 0276.34003, MR 0255880, 10.1016/0022-0396(70)90108-7
Reference: [10] Henstock, R.: Lectures on the Theory of Integration.Series in Real Analysis 1. World Scientific, Singapore (1988). Zbl 0668.28001, MR 0963249, 10.1142/0510
Reference: [11] Kawasaki, T.: On Newton integration in vector spaces.Math. Jap. 46 (1997), 85-90. Zbl 0913.46004, MR 1466120
Reference: [12] Kennedy, H. C.: Is there an elementary proof of Peano's existence theorem for first order differential equations?.Am. Math. Mon. 76 (1969), 1043-1045. MR 1535642, 10.2307/2317137
Reference: [13] Koliha, J. J.: Metrics, Norms and Integrals: An Introduction to Contemporary Analysis.World Scientific, Hackensack (2008). Zbl 1169.26001, MR 2484181, 10.1142/7090
Reference: [14] Koliha, J. J.: Mean, meaner, and the meanest mean value theorem.Am. Math. Mon. 116 (2009), 356-361. Zbl 1229.26009, MR 2503322, 10.1080/00029890.2009.11920948
Reference: [15] Kurzweil, J.: Generalized ordinary differential equations and continuous dependence on a parameter.Czech. Math. J. 7 (1957), 418-449. Zbl 0090.30002, MR 0111875, 10.21136/CMJ.1957.100258
Reference: [16] Leng, N. W., Yee, L. P.: An alternative definition of the Henstock-Kurzweil integral using primitives.N. Z. J. Math. 48 (2018), 121-128. Zbl 1405.26008, MR 3884908, 10.53733/31
Reference: [17] Mikusińksi, P., Ostaszewski, K.: Embedding Henstock integrable functions into the space of Schwartz distributions.Real Anal. Exchange 14 (1988), 24-29. MR 1051926, 10.2307/44153614
Reference: [18] Mikusiński, J., Sikorski, R.: The elementary theory of distributions. I.Rozprawy Mat. 12 (1957), 52 pages. Zbl 0078.11101, MR 0094702
Reference: [19] Peano, G.: Sull' integrabilità delle equazioni differenziali di primo ordine.Atti. Accad. Sci. Torino 21 (1886), 677-685 Italian \99999JFM99999 18.0284.02.
Reference: [20] Peano, G.: Démonstration de l'integrabilité des équations différentielles ordinaires.Math. Ann. 37 (1890), 182-228 French \99999JFM99999 22.0302.01. MR 1510645, 10.1007/BF01200235
Reference: [21] Perron, O.: Ein neuer Existenzbeweis für die Integrale der Differentialgleichung $y'=f(x,y)$.Math. Ann. 76 (1915), 471-484 German \99999JFM99999 45.0469.01. MR 1511836, 10.1007/BF01458218
Reference: [22] Stromberg, K. R.: An Introduction to Classical Real Analysis.Wadsworth International Mathematics Series. Wadsworth, Belmont (1981). Zbl 0454.26001, MR 0604364, 10.1090/chel/376
Reference: [23] Talvila, E.: The distributional Denjoy integral.Real Anal. Exch. 33 (2008), 51-82. Zbl 1154.26011, MR 2402863, 10.14321/realanalexch.33.1.0051
Reference: [24] Tevy, I.: Une définition de l'intégrale de Lebesgue à l'aide des fonctions primitives.Rev. Roum. Math. Pures Appl. 19 (1974), 1159-1163 French. Zbl 0326.28010, MR 0364575
Reference: [25] Walter, J.: On elementary proofs of Peano's existence theorem.Am. Math. Mon. 80 (1973), 282-286. Zbl 0275.34003, MR 0316785, 10.2307/2318451
Reference: [26] Walter, W.: There is an elementary proof of Peano's existence theorem.Am. Math. Mon. 78 (1971), 170-173. Zbl 0207.08401, MR 0276524, 10.2307/2317624
.

Fulltext not available (moving wall 24 months)

Partner of
EuDML logo