Previous |  Up |  Next

Article

Title: On unbounded solutions for differential equations with mean curvature operator (English)
Author: Došlá, Zuzana
Author: Marini, Mauro
Author: Matucci, Serena
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 75
Issue: 1
Year: 2025
Pages: 215-234
Summary lang: English
.
Category: math
.
Summary: We present necessary and sufficient conditions for the existence of unbounded increasing solutions to ordinary differential equations with mean curvature operator. The results illustrate the asymptotic proximity of such solutions with those of an auxiliary linear equation on the threshold of oscillation. A new oscillation criterion for equations with mean curvature operator, extending Leighton criterion for linear Sturm-Liouville equation, is also derived. (English)
Keyword: nonlinear differential equation
Keyword: curvatore operator
Keyword: boundary value problem on the half line
Keyword: fixed point theorem
Keyword: unbounded solution
MSC: 34B16
MSC: 34C25
DOI: 10.21136/CMJ.2023.0111-23
.
Date available: 2025-03-11T16:01:31Z
Last updated: 2025-03-19
Stable URL: http://hdl.handle.net/10338.dmlcz/152905
.
Reference: [1] Agarwal, R. P., Grace, S. R., O'Regan, D.: Oscillation Theory for Second Order Linear, Half-Linear, Superlinear and Sublinear Dynamic Equations.Kluwer Academic, Dordrecht (2002). Zbl 1073.34002, MR 2091751, 10.1007/978-94-017-2515-6
Reference: [2] Armellini, G.: Sopra un'equazione differenziale della dinamica.Atti Accad. Naz. Lincei, Rend., VI. Ser. 21 (1935), 111-116 Italian. Zbl 0011.20902, MR 0035358
Reference: [3] Azzollini, A.: Ground state solutions for the Hénon prescribed mean curvature equation.Adv. Nonlinear Anal. 8 (2019), 1227-1234. Zbl 1419.35047, MR 3918427, 10.1515/anona-2017-0233
Reference: [4] Bereanu, C., Jebelean, P., Mawhin, J.: Radial solutions for Neumann problems involving mean curvature operators in Euclidean and Minkowski spaces.Math. Nachr. 283 (2010), 379-391. Zbl 1185.35113, MR 2643019, 10.1002/mana.200910083
Reference: [5] Bereanu, C., Mawhin, J.: Periodic solutions of nonlinear perturbations of $\phi$-Laplacians with possibly bounded $\phi$.Nonlinear Anal., Theory Methods Appl., Ser. A 68 (2008), 1668-1681. Zbl 1147.34032, MR 2388840, 10.1016/j.na.2006.12.049
Reference: [6] Bonanno, G., Livrea, R., Mawhin, J.: Existence results for parametric boundary value problems involving the mean curvature operator.NoDEA, Nonlinear Differ. Equ. Appl. 22 (2015), 411-426. Zbl 1410.34073, MR 3349800, 10.1007/s00030-014-0289-7
Reference: [7] Cecchi, M., Došlá, Z., Marini, M.: Oscillation of a class of differential equations with generalized phi-Laplacian.Proc. R. Soc. Edinb., Sect. A, Math. 143 (2013), 493-506. Zbl 1302.34054, MR 3063571, 10.1017/S0308210511001156
Reference: [8] Cecchi, M., Furi, M., Marini, M.: On continuity and compactness of some nonlinear operators associated with differential equations in noncompact intervals.Nonlinear Anal., Theory Methods Appl. 9 (1985), 171-180. Zbl 0563.34018, MR 0777986, 10.1016/0362-546X(85)90070-7
Reference: [9] Cecchi, M., Marini, M., Villari, G.: Integral criteria for a classification of solutions of linear differential equations.J. Differ. Equations 99 (1992), 381-397. Zbl 0761.34009, MR 1184060, 10.1016/0022-0396(92)90027-K
Reference: [10] Došlá, Z., Cecchi, M., Marini, M.: Asymptotic problems for differential equation with bounded $\Phi$-Laplacian.Electron. J. Qual. Theory Differ. Equ. 2009 (2009), Article ID 9, 18 pages. Zbl 1203.34076, MR 2558834, 10.14232/ejqtde.2009.4.9
Reference: [11] Došlá, Z., Kiguradze, I.: On vanishing at infinity solutions of second order linear differential equations with advanced arguments.Funkc. Ekvacioj, Ser. Int. 41 (1998), 189-205. Zbl 1140.34433, MR 1662336
Reference: [12] Došlá, Z., Marini, M.: On super-linear Emden-Fowler type differential equations.J. Math. Anal. Appl. 416 (2014), 497-510. Zbl 1375.34050, MR 3188719, 10.1016/j.jmaa.2014.02.052
Reference: [13] Došlá, Z., Marini, M., Matucci, S.: Positive decaying solutions to BVPs with mean curvature operator.Rend. Ist. Mat. Univ. Trieste 49 (2017), 147-164. Zbl 1448.34058, MR 3748508, 10.13137/2464-8728/16210
Reference: [14] Hartman, P.: Ordinary Differential Equations.Birkhäuser, Boston (1982). Zbl 0476.34002, MR 0658490
Reference: [15] Kurzweil, J.: Sur l'équation $\ddot{x}+ f(t) x= 0$.Čas. Pěst. Mat. 82 (1957), 218-226 French. Zbl 0102.07702, MR 0094506, 10.21136/CPM.1957.117256
Reference: [16] Kurzweil, J.: Generalized Ordinary Differential Equations. Not Absolutely Continuous Solutions.Series in Real Analysis 11. World Scientific, Hackensack (2012). Zbl 1248.34001, MR 2906899, 10.1142/7907
Reference: [17] López-Gómez, J., Omari, P.: Optimal regularity results for the one-dimensional prescribed curvature equation via the strong maximum principle.J. Math. Anal. Appl. 518 (2023), Article ID 126719, 22 pages. Zbl 1501.35240, MR 4492129, 10.1016/j.jmaa.2022.126719
Reference: [18] Moore, R. A., Nehari, Z.: Nonoscillation theorems for a class of nonlinear differential equations.Trans. Am. Math. Soc. 93 (1959), 30-52. Zbl 0089.06902, MR 0111897, 10.1090/S0002-9947-1959-0111897-8
Reference: [19] Swanson, C. A.: Comparison and Oscillation Theory of Linear Differential Equations.Mathematics in Science and Engineering 48. Academic Press, New York (1968). Zbl 0191.09904, MR 0463570, 10.1016/s0076-5392(08)x6131-4
Reference: [20] Takaŝi, K., Manojlović, J. V., Milošević, J.: Intermediate solutions of second order quasilinear ordinary differential equations in the framework of regular variation.Appl. Math. Comput. 219 (2013), 8178-8191. Zbl 1294.34057, MR 3037526, 10.1016/j.amc.2013.02.007
.

Fulltext not available (moving wall 24 months)

Partner of
EuDML logo