Title: | On almost periodicity defined via non-absolutely convergent integrals (English) |
Author: | Bugajewski, Dariusz |
Author: | Nawrocki, Adam |
Language: | English |
Journal: | Czechoslovak Mathematical Journal |
ISSN: | 0011-4642 (print) |
ISSN: | 1572-9141 (online) |
Volume: | 75 |
Issue: | 1 |
Year: | 2025 |
Pages: | 193-214 |
Summary lang: | English |
. | |
Category: | math |
. | |
Summary: | We investigate some properties of the normed space of almost periodic functions which are defined via the Denjoy-Perron (or equivalently, Henstock-Kurzweil) integral. In particular, we prove that this space is barrelled while it is not complete. We also prove that a linear differential equation with the non-homogenous term being an almost periodic function of such type, possesses a solution in the class under consideration. (English) |
Keyword: | almost periodic function in view of the Lebesgue measure |
Keyword: | barrelled space |
Keyword: | Bohr almost periodic function |
Keyword: | Denjoy-Bochner almost periodic function |
Keyword: | Denjoy-Perron integral |
Keyword: | Henstock-Kurzweil integral |
Keyword: | linear differential equation |
MSC: | 26A39 |
MSC: | 34A30 |
MSC: | 42A75 |
DOI: | 10.21136/CMJ.2024.0014-23 |
. | |
Date available: | 2025-03-11T16:01:02Z |
Last updated: | 2025-03-19 |
Stable URL: | http://hdl.handle.net/10338.dmlcz/152904 |
. | |
Reference: | [1] Alexiewicz, A.: Linear functionals on Denjoy-integrable functions.Colloq. Math. 1 (1948), 289-293. Zbl 0037.32302, MR 0030120, 10.4064/cm-1-4-289-293 |
Reference: | [2] Andres, J., Bersani, A. M., Grande, R. F.: Hierarchy of almost-periodic function spaces.Rend. Mat. Appl., VII. Ser. 26 (2006), 121-188. Zbl 1133.42002, MR 2275292 |
Reference: | [3] Borkowski, M., Bugajewska, D.: Applications of Henstock-Kurzweil integrals on an unbounded interval to differential and integral equations.Math. Slovaca 68 (2018), 77-88. Zbl 1473.45008, MR 3764318, 10.1515/ms-2017-0082 |
Reference: | [4] Borkowski, M., Bugajewska, D., Kasprzak, P.: Selected Topics in Nonlinear Analysis.Lecture Notes in Nonlinear Analysis 19. Nicolaus Copernicus University, Juliusz Schauder Center for Nonlinear Studies, Toruń (2021). Zbl 1506.47001, MR 4404311 |
Reference: | [5] Bruno, G., Pankov, A.: On convolution operators in the spaces of almost periodic functions and $L^p$ spaces.Z. Anal. Anwend. 19 (2000), 359-367. Zbl 0972.47036, MR 1768997, 10.4171/ZAA/955 |
Reference: | [6] Bugajewski, D.: On the structure of solution sets of differential and integral equations, and the Perron integral.Proceedings of the Prague Mathematical Conference 1996 Icaris, Prague (1996), 47-51. Zbl 0966.34041, MR 1703455 |
Reference: | [7] Bugajewski, D.: On the Volterra integral equation and the Henstock-Kurzweil integral.Math. Pannonica 9 (1998), 141-145. Zbl 0906.45005, MR 1620430 |
Reference: | [8] Bugajewski, D., Kasprzak, K., Nawrocki, A.: Asymptotic properties and convolutions of some almost periodic functions with applications.Ann. Mat. Pura Appl. (4) 202 (2023), 1033-1050. Zbl 1512.42008, MR 4576930, 10.1007/s10231-022-01270-2 |
Reference: | [9] Bugajewski, D., Nawrocki, A.: Some remarks on almost periodic functions in view of the Lebesgue measure with applications to linear differential equations.Ann. Acad. Sci. Fenn., Math. 42 (2017), 809-836. Zbl 1372.42003, MR 3701650, 10.5186/aasfm.2017.4250 |
Reference: | [10] Bugajewski, D., Szufla, S.: On the Aronszajn property for differential equations and the Denjoy integral.Ann. Soc. Math. Pol., Ser. I, Commentat. Math. 25 (1995), 61-69. Zbl 0854.34005, MR 1384852 |
Reference: | [11] Burkill, H.: Almost periodicity and non-absolutely integrable functions.Proc. Lond. Math. Soc., II. Ser. 53 (1951), 32-42. Zbl 0042.31901, MR 0043251, 10.1112/plms/s2-53.1.32 |
Reference: | [12] Chew, T. S., Flordeliza, F.: On $x'=f(t,x)$ and Henstock-Kurzweil integrals.Differ. Integral Equ. 4 (1991), 861-868. Zbl 0733.34004, MR 1108065, 10.57262/die/1371225020 |
Reference: | [13] Henstock, R.: Definitions of Riemann type of the variational integral.Proc. Lond. Math. Soc., III. Ser. 11 (1961), 402-418. Zbl 0099.27402, MR 0132147, 10.1112/plms/s3-11.1.402 |
Reference: | [14] Horváth, J.: Topological Vector Spaces and Distributions. Vol. I.Addison-Wesley, Reading (1966). Zbl 0143.15101, MR 0205028 |
Reference: | [15] Kasprzak, P., Nawrocki, A., Signerska-Rynkowska, J.: Integrate-and-fire models an almost periodic input function.J. Differ. Equations 264 (2018), 2495-2537. Zbl 1380.42006, MR 3737845, 10.1016/j.jde.2017.10.025 |
Reference: | [16] Kurzweil, J.: Generalized ordinary differential equations and continuous dependence on a parameter.Czech. Math. J. 7 (1957), 418-449. Zbl 0090.30002, MR 0111875, 10.21136/CMJ.1957.100258 |
Reference: | [17] Kurzweil, J.: Generalized Ordinary Differential Equations: Not Absolutely Continuous Solutions.Series in Real Analysis 11. World Scientific, Hackensack (2012). Zbl 1248.34001, MR 2906899, 10.1142/7907 |
Reference: | [18] Meyer, Y.: Quasicrystals, almost periodic patterns, mean-periodic functions and irregular sampling.Afr. Diaspora J. Math. 13 (2012), 1-45. Zbl 1242.52026, MR 2876415 |
Reference: | [19] Pal, B. K., Mukhopadhyay, S. N.: Denjoy-Bochner almost periodic functions.J. Aust. Math. Soc., Ser. A 37 (1984), 205-222. Zbl 0552.42005, MR 0749501, 10.1017/S1446788700022047 |
Reference: | [20] Pych-Taberska, P.: Approximation of almost periodic functions integrable in the Denjoy-Perron sense.Function Spaces Teubner-Texte zur Mathematik 120. B. G. Teubner, Stuttgart (1991), 186-196. Zbl 0757.41029, MR 1155174 |
Reference: | [21] Pych-Taberska, P.: On some almost periodic convolutions.Funct. Approximatio, Comment. Math. 20 (1992), 65-77. Zbl 0848.42009, MR 1201717 |
Reference: | [22] Saks, S.: Theory of the Integral.Monografie Matematyczne 7. G. E. Stechert & Co., New York (1937). Zbl 0017.30004, MR 0167578 |
Reference: | [23] Schwabik, Š.: The Perron integral in ordinary differential equations.Differ. Integral Equ. 6 (1993), 863-882. Zbl 0784.34006, MR 1222306, 10.57262/die/1370032239 |
Reference: | [24] Stoiński, S.: Almost periodic function in the Lebesgue measure.Ann. Soc. Math. Pol., Ser. I, Commentat. Math. 34 (1994), 189-198. Zbl 0835.42009, MR 1325086 |
Reference: | [25] Stoiński, S.: Almost Periodic Functions.Scientific Publisher AMU, Poznań (2008), Polish. |
Reference: | [26] Swartz, C.: Introduction to Gauge Integrals.World Scientific, Singapore (2001). Zbl 0982.26006, MR 1845270, 10.1142/4361 |
. |
Fulltext not available (moving wall 24 months)