Previous |  Up |  Next

Article

Title: On almost periodicity defined via non-absolutely convergent integrals (English)
Author: Bugajewski, Dariusz
Author: Nawrocki, Adam
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 75
Issue: 1
Year: 2025
Pages: 193-214
Summary lang: English
.
Category: math
.
Summary: We investigate some properties of the normed space of almost periodic functions which are defined via the Denjoy-Perron (or equivalently, Henstock-Kurzweil) integral. In particular, we prove that this space is barrelled while it is not complete. We also prove that a linear differential equation with the non-homogenous term being an almost periodic function of such type, possesses a solution in the class under consideration. (English)
Keyword: almost periodic function in view of the Lebesgue measure
Keyword: barrelled space
Keyword: Bohr almost periodic function
Keyword: Denjoy-Bochner almost periodic function
Keyword: Denjoy-Perron integral
Keyword: Henstock-Kurzweil integral
Keyword: linear differential equation
MSC: 26A39
MSC: 34A30
MSC: 42A75
DOI: 10.21136/CMJ.2024.0014-23
.
Date available: 2025-03-11T16:01:02Z
Last updated: 2025-03-19
Stable URL: http://hdl.handle.net/10338.dmlcz/152904
.
Reference: [1] Alexiewicz, A.: Linear functionals on Denjoy-integrable functions.Colloq. Math. 1 (1948), 289-293. Zbl 0037.32302, MR 0030120, 10.4064/cm-1-4-289-293
Reference: [2] Andres, J., Bersani, A. M., Grande, R. F.: Hierarchy of almost-periodic function spaces.Rend. Mat. Appl., VII. Ser. 26 (2006), 121-188. Zbl 1133.42002, MR 2275292
Reference: [3] Borkowski, M., Bugajewska, D.: Applications of Henstock-Kurzweil integrals on an unbounded interval to differential and integral equations.Math. Slovaca 68 (2018), 77-88. Zbl 1473.45008, MR 3764318, 10.1515/ms-2017-0082
Reference: [4] Borkowski, M., Bugajewska, D., Kasprzak, P.: Selected Topics in Nonlinear Analysis.Lecture Notes in Nonlinear Analysis 19. Nicolaus Copernicus University, Juliusz Schauder Center for Nonlinear Studies, Toruń (2021). Zbl 1506.47001, MR 4404311
Reference: [5] Bruno, G., Pankov, A.: On convolution operators in the spaces of almost periodic functions and $L^p$ spaces.Z. Anal. Anwend. 19 (2000), 359-367. Zbl 0972.47036, MR 1768997, 10.4171/ZAA/955
Reference: [6] Bugajewski, D.: On the structure of solution sets of differential and integral equations, and the Perron integral.Proceedings of the Prague Mathematical Conference 1996 Icaris, Prague (1996), 47-51. Zbl 0966.34041, MR 1703455
Reference: [7] Bugajewski, D.: On the Volterra integral equation and the Henstock-Kurzweil integral.Math. Pannonica 9 (1998), 141-145. Zbl 0906.45005, MR 1620430
Reference: [8] Bugajewski, D., Kasprzak, K., Nawrocki, A.: Asymptotic properties and convolutions of some almost periodic functions with applications.Ann. Mat. Pura Appl. (4) 202 (2023), 1033-1050. Zbl 1512.42008, MR 4576930, 10.1007/s10231-022-01270-2
Reference: [9] Bugajewski, D., Nawrocki, A.: Some remarks on almost periodic functions in view of the Lebesgue measure with applications to linear differential equations.Ann. Acad. Sci. Fenn., Math. 42 (2017), 809-836. Zbl 1372.42003, MR 3701650, 10.5186/aasfm.2017.4250
Reference: [10] Bugajewski, D., Szufla, S.: On the Aronszajn property for differential equations and the Denjoy integral.Ann. Soc. Math. Pol., Ser. I, Commentat. Math. 25 (1995), 61-69. Zbl 0854.34005, MR 1384852
Reference: [11] Burkill, H.: Almost periodicity and non-absolutely integrable functions.Proc. Lond. Math. Soc., II. Ser. 53 (1951), 32-42. Zbl 0042.31901, MR 0043251, 10.1112/plms/s2-53.1.32
Reference: [12] Chew, T. S., Flordeliza, F.: On $x'=f(t,x)$ and Henstock-Kurzweil integrals.Differ. Integral Equ. 4 (1991), 861-868. Zbl 0733.34004, MR 1108065, 10.57262/die/1371225020
Reference: [13] Henstock, R.: Definitions of Riemann type of the variational integral.Proc. Lond. Math. Soc., III. Ser. 11 (1961), 402-418. Zbl 0099.27402, MR 0132147, 10.1112/plms/s3-11.1.402
Reference: [14] Horváth, J.: Topological Vector Spaces and Distributions. Vol. I.Addison-Wesley, Reading (1966). Zbl 0143.15101, MR 0205028
Reference: [15] Kasprzak, P., Nawrocki, A., Signerska-Rynkowska, J.: Integrate-and-fire models an almost periodic input function.J. Differ. Equations 264 (2018), 2495-2537. Zbl 1380.42006, MR 3737845, 10.1016/j.jde.2017.10.025
Reference: [16] Kurzweil, J.: Generalized ordinary differential equations and continuous dependence on a parameter.Czech. Math. J. 7 (1957), 418-449. Zbl 0090.30002, MR 0111875, 10.21136/CMJ.1957.100258
Reference: [17] Kurzweil, J.: Generalized Ordinary Differential Equations: Not Absolutely Continuous Solutions.Series in Real Analysis 11. World Scientific, Hackensack (2012). Zbl 1248.34001, MR 2906899, 10.1142/7907
Reference: [18] Meyer, Y.: Quasicrystals, almost periodic patterns, mean-periodic functions and irregular sampling.Afr. Diaspora J. Math. 13 (2012), 1-45. Zbl 1242.52026, MR 2876415
Reference: [19] Pal, B. K., Mukhopadhyay, S. N.: Denjoy-Bochner almost periodic functions.J. Aust. Math. Soc., Ser. A 37 (1984), 205-222. Zbl 0552.42005, MR 0749501, 10.1017/S1446788700022047
Reference: [20] Pych-Taberska, P.: Approximation of almost periodic functions integrable in the Denjoy-Perron sense.Function Spaces Teubner-Texte zur Mathematik 120. B. G. Teubner, Stuttgart (1991), 186-196. Zbl 0757.41029, MR 1155174
Reference: [21] Pych-Taberska, P.: On some almost periodic convolutions.Funct. Approximatio, Comment. Math. 20 (1992), 65-77. Zbl 0848.42009, MR 1201717
Reference: [22] Saks, S.: Theory of the Integral.Monografie Matematyczne 7. G. E. Stechert & Co., New York (1937). Zbl 0017.30004, MR 0167578
Reference: [23] Schwabik, Š.: The Perron integral in ordinary differential equations.Differ. Integral Equ. 6 (1993), 863-882. Zbl 0784.34006, MR 1222306, 10.57262/die/1370032239
Reference: [24] Stoiński, S.: Almost periodic function in the Lebesgue measure.Ann. Soc. Math. Pol., Ser. I, Commentat. Math. 34 (1994), 189-198. Zbl 0835.42009, MR 1325086
Reference: [25] Stoiński, S.: Almost Periodic Functions.Scientific Publisher AMU, Poznań (2008), Polish.
Reference: [26] Swartz, C.: Introduction to Gauge Integrals.World Scientific, Singapore (2001). Zbl 0982.26006, MR 1845270, 10.1142/4361
.

Fulltext not available (moving wall 24 months)

Partner of
EuDML logo