Previous |  Up |  Next

Article

Title: Positive periodic solutions to super-linear second-order ODEs (English)
Author: Šremr, Jiří
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 75
Issue: 1
Year: 2025
Pages: 257-275
Summary lang: English
.
Category: math
.
Summary: We study the existence and uniqueness of a positive solution to the problem $$ u''=p(t)u+q(t,u)u+f(t);\quad u(0)=u(\omega ),\ u'(0)=u'(\omega ) $$ with a super-linear nonlinearity and a nontrivial forcing term $f$. To prove our main results, we combine maximum and anti-maximum principles together with the lower/upper functions method. We also show a possible physical motivation for the study of such a kind of periodic problems and we compare the results obtained with the facts well known for the corresponding autonomous case. (English)
Keyword: second-order differential equation
Keyword: super-linearity
Keyword: positive solution
Keyword: existence
Keyword: uniqueness
MSC: 34B18
MSC: 34C25
DOI: 10.21136/CMJ.2024.0128-23
.
Date available: 2025-03-11T16:02:44Z
Last updated: 2025-03-19
Stable URL: http://hdl.handle.net/10338.dmlcz/152907
.
Reference: [1] Cabada, A., Cid, J. Á., López-Somoza, L.: Maximum Principles for the Hill's Equation.Academic Press, London (2018). Zbl 1393.34003, MR 3751358
Reference: [2] Chen, H., Li, Y.: Stability and exact multiplicity of periodic solutions of Duffing equations with cubic nonlinearities.Proc. Am. Math. Soc. 135 (2007), 3925-3932. Zbl 1166.34313, MR 2341942, 10.1090/S0002-9939-07-09024-7
Reference: [3] Chen, H., Li, Y.: Bifurcation and stability of periodic solutions of Duffing equations.Nonlinearity 21 (2008), 2485-2503. Zbl 1159.34033, MR 2448227, 10.1088/0951-7715/21/11/001
Reference: [4] Coster, C. De, Habets, P.: Two-Point Boundary Value Problems: Lower and Upper Solutions.Mathematics in Science and Engineering 205. Elsevier, Amsterdam (2006). Zbl 1330.34009, MR 2225284, 10.1016/s0076-5392(06)x8055-4
Reference: [5] Fabry, C., Mawhin, J., Nkashama, M. N.: A multiplicity result for periodic solutions of forced nonlinear second order ordinary differential equations.Bull. Lond. Math. Soc. 18 (1986), 173-180. Zbl 0586.34038, MR 0818822, 10.1112/blms/18.2.173
Reference: [6] Fonda, A.: Playing Around Resonance: An Invitation to the Search of Periodic Solutions for Second Order Ordinary Differential Equations.Birkhäuser Advanced Texts: Basler Lehrbücher. Birkhäuser, Cham (2016). Zbl 1364.34004, MR 3585909, 10.1007/978-3-319-47090-0
Reference: [7] Graef, J. R., Kong, L., Wang, H.: Existence, multiplicity, and dependence on a parameter for a periodic boundary value problem.J. Differ. Equations 245 (2008), 1185-1197. Zbl 1203.34028, MR 2436827, 10.1016/j.jde.2008.06.012
Reference: [8] Grossinho, M. R., Sanchez, L.: A note on periodic solutions of some nonautonomous differential equations.Bull. Aust. Math. Soc. 34 (1986), 253-265. Zbl 0592.34028, MR 0854571, 10.1017/S000497270001011X
Reference: [9] Liang, S.: Exact multiplicity and stability of periodic solutions for Duffing equation with bifurcation method.Qual. Theory Dyn. Syst. 18 (2019), 477-493. Zbl 1472.34077, MR 3982750, 10.1007/s12346-018-0296-x
Reference: [10] Lomtatidze, A.: Theorems on differential inequalities and periodic boundary value problem for second-order ordinary differential equations.Mem. Differ. Equ. Math. Phys. 67 (2016), 1-129. Zbl 1352.34033, MR 3472904
Reference: [11] Lomtatidze, A., Šremr, J.: On periodic solutions to second-order Duffing type equations.Nonlinear Anal., Real World Appl. 40 (2018), 215-242. Zbl 1396.34024, MR 3718982, 10.1016/j.nonrwa.2017.09.001
Reference: [12] Šremr, J.: Existence and exact multiplicity of positive periodic solutions to forced non-autonomous Duffing type differential equations.Electron. J. Qual. Theory Differ. Equ. 2021 (2021), Article ID 62, 33 pages. Zbl 1488.34248, MR 4389331, 10.14232/ejqtde.2021.1.62
Reference: [13] Šremr, J.: On a structure of the set of positive solutions to second-order equations with a super-linear non-linearity.Georgian Math. J. 29 (2022), 139-152. Zbl 1490.34049, MR 4373259, 10.1515/gmj-2021-2117
Reference: [14] Torres, P. J.: Existence of one-signed periodic solutions of some second-order differential equations via a Krasnoselskii fixed point theorem.J. Differ. Equations 190 (2003), 643-662. Zbl 1032.34040, MR 1970045, 10.1016/S0022-0396(02)00152-3
Reference: [15] Zamora, M.: A note on the periodic solutions of a Mathieu-Duffing type equations.Math. Nachr. 290 (2017), 1113-1118. Zbl 1368.34039, MR 3652218, 10.1002/mana.201400122
.

Fulltext not available (moving wall 24 months)

Partner of
EuDML logo