Previous |  Up |  Next

Article

Title: Boundary value problems with bounded $\varphi $-Laplacian and nonlocal conditions of integral type (English)
Author: Bugajewska, Daria
Author: Mawhin, Jean
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 75
Issue: 1
Year: 2025
Pages: 277-288
Summary lang: English
.
Category: math
.
Summary: We study the existence of solutions to nonlinear boundary value problems for second order quasilinear ordinary differential equations involving bounded $\varphi $-Laplacian, subject to integral boundary conditions formulated in terms of Riemann-Stieltjes integrals. (English)
Keyword: boundary value problem
Keyword: $\varphi $-Laplacian
Keyword: functions of bounded variation
Keyword: Riemann-Stieltjes integral
Keyword: prescribed curvature
MSC: 34B10
MSC: 47H30
DOI: 10.21136/CMJ.2023.0154-23
.
Date available: 2025-03-11T16:03:16Z
Last updated: 2025-03-19
Stable URL: http://hdl.handle.net/10338.dmlcz/152908
.
Reference: [1] Appell, J., Bugajewska, D., Reinwand, S.: Nonlocal boundary value problems with BV- type data.Electron. J. Qual. Theory Differ. Equ. 2020 (2020), Article ID 69, 18 pages. Zbl 1474.34121, MR 4208476, 10.14232/ejqtde.2020.1.69
Reference: [2] Bereanu, C., Mawhin, J.: Nonlinear Neumann boundary value problems with $\phi$-Laplacian operators.An. Ştiinţ. Univ. Ovidus Constanţa, Ser. Mat. 12 (2004), 73-82. Zbl 1117.34015, MR 2209116
Reference: [3] Bereanu, C., Mawhin, J.: Boundary-value problems with non-surjective $\phi$-Laplacian and one-sided bounded nonlinearity.Adv. Differ. Equ. 11 (2006), 35-60. Zbl 1111.34016, MR 2192414
Reference: [4] Bonheure, D., Habets, P., Obersnel, F., Omari, P.: Classical and non-classical positive solutions of a prescribed curvature equation with singularities.Rend. Ist. Mat. Univ. Trieste 39 (2007), 63-85. Zbl 1160.34015, MR 2441611
Reference: [5] Bugajewska, D., Infante, G., Kasprzak, P.: Solvability of Hammerstein integral equations with applications to boundary value problems.Z. Anal. Anwend. 36 (2017), 393-417. Zbl 1384.45005, MR 3713050, 10.4171/zaa/1594
Reference: [6] Habets, P., Omari, P.: Multiple positive solutions of a one-dimensional prescribed mean curvature problem.Commun. Contemp. Math. 9 (2007), 701-730. Zbl 1153.34015, MR 2361738, 10.1142/S0219199707002617
Reference: [7] Infante, G., Webb, J. R. L.: Nonlinear non-local boundary-value problems and perturbed Hammerstein integral equations.Proc. Edinb. Math. Soc., II. Ser. 49 (2006), 637-656 \99999DOI99999 10.1017/S0013091505000532 . Zbl 1115.34026, MR 2266153, 10.1017/S0013091505000532
Reference: [8] Kusahara, T., Usami, H.: A barrier method for quasilinear ordinary differential equations of the curvature type.Czech. Math. J. 50 (2000), 185-196. Zbl 1046.34009, MR 1745471, 10.1023/A:1022409808258
Reference: [9] Leray, J., Schauder, J.: Topologie et équations fonctionnelles.Ann. Sci. Éc. Norm. Supér., III. Ser. 51 (1934), 45-78 French. Zbl 0009.07301, MR 1509338, 10.24033/asens.836
Reference: [10] Mawhin, J.: Topological Degree Methods in Nonlinear Boundary Value Problems.Regional Conference Series in Mathematics 40. AMS, Providence (1979). Zbl 0414.34025, MR 0525202, 10.1090/cbms/040
Reference: [11] Mawhin, J.: Boundary value problems for nonlinear perturbations of some $\phi$-Laplacians.Fixed Point Theory and its Applications Banach Center Publications 77. Institute of Mathematics, Polish Academy of Sciences, Warsaw (2007), 201-214. Zbl 1129.34010, MR 2338585, 10.4064/bc77-0-15
Reference: [12] Monteiro, G. A., Slavík, A., Tvrdý, M.: Kurzweil-Stieltjes Integral: Theory and Applications.Series in Real Analysis 15. World Scientific, Hackensack (2019). Zbl 1437.28001, MR 3839599, 10.1142/9432
Reference: [13] Webb, J. R. L.: Positive solutions of a boundary value problem with integral boundary conditions.Electron. J. Differ. Equ. 2011 (2011), Article ID 55, 10 pages. Zbl 1229.34039, MR 2801240
.

Fulltext not available (moving wall 24 months)

Partner of
EuDML logo