Previous |  Up |  Next

Article

Title: Ergodicity of increments of the Rosenblatt process and some consequences (English)
Author: Čoupek, Petr
Author: Kříž, Pavel
Author: Maslowski, Bohdan
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 75
Issue: 1
Year: 2025
Pages: 327-343
Summary lang: English
.
Category: math
.
Summary: A new proof of the mixing property of the increments of Rosenblatt processes is given. The proof relies on infinite divisibility of the Rosenblatt law that allows to prove only the pointwise convergence of characteristic functions. Subsequently, the result is used to prove weak consistency of an estimator for the self-similarity parameter of a Rosenblatt process, and to prove the existence of a random attractor for a random dynamical system induced by a stochastic reaction-diffusion equation driven by additive Rosenblatt noise. (English)
Keyword: Rosenblatt process
Keyword: mixing
Keyword: variation
Keyword: consistent estimator
Keyword: random attractor
MSC: 37H10
MSC: 60G22
DOI: 10.21136/CMJ.2024.0252-23
.
Date available: 2025-03-11T16:05:09Z
Last updated: 2025-03-19
Stable URL: http://hdl.handle.net/10338.dmlcz/152911
.
Reference: [1] Abry, P., Pipiras, V.: Wavelet-based synthesis of the Rosenblatt process.Signal Process. 86 (2006), 2326-2339. Zbl 1172.94348, 10.1016/j.sigpro.2005.10.021
Reference: [2] Albin, J. M. P.: A note on the Rosenblatt distributions.Stat. Probab. Lett. 40 (1998), 83-91. Zbl 0951.60019, MR 1650532, 10.1016/S0167-7152(98)00109-6
Reference: [3] Arnold, L.: Random Dynamical Systems.Springer Monographs in Mathematics. Springer, Berlin (1998). Zbl 0906.34001, MR 1723992, 10.1007/978-3-662-12878-7
Reference: [4] Assaad, O., Tudor, C. A.: Parameter identification for the Hermite Ornstein-Uhlenbeck process.Stat. Inference Stoch. Process. 23 (2020), 251-270. Zbl 1448.60118, MR 4123924, 10.1007/s11203-020-09219-z
Reference: [5] Bardet, J.-M., Tudor, C. A.: A wavelet analysis of the Rosenblatt process: Chaos expansion and estimation of the self-similarity parameter.Stochastic Processes Appl. 120 (2010), 2331-2362. Zbl 1203.60043, MR 2728168, 10.1016/j.spa.2010.08.003
Reference: [6] Billingsley, P.: Probability and Measure.Wiley Series in Probability and Mathematical Statistics. John Wiley & Sons, New York (1995). Zbl 0822.60002, MR 1324786
Reference: [7] Bonaccorsi, S., Tudor, C. A.: Dissipative stochastic evolution equations driven by general Gaussian and non-Gaussian noise.J. Dyn. Differ. Equations 23 (2011), 791-816. Zbl 1239.60052, MR 2859941, 10.1007/s10884-011-9217-2
Reference: [8] Chronopoulou, A., Tudor, C. A., Viens, F. G.: Self-similarity parameter estimation and reproduction property for non-Gaussian Hermite processes.Commun. Stoch. Anal. 5 (2011), 161-185. Zbl 1331.62098, MR 2808541, 10.31390/cosa.5.1.10
Reference: [9] Chronopoulou, A., Viens, F. G., Tudor, C. A.: Variations and Hurst index estimation for Rosenblatt process using longer filters.Electron. J. Stat. 3 (2009), 1393-1435. Zbl 1326.60046, MR 2578831, 10.1214/09-EJS423
Reference: [10] Čoupek, P.: Limiting measure and stationarity of solutions to stochastic evolution equations with Volterra noise.Stochastic Anal. Appl. 36 (2018), 393-412. Zbl 1390.60227, MR 3784139, 10.1080/07362994.2017.1409124
Reference: [11] Čoupek, P., Duncan, T. E., Pasik-Duncan, B.: A stochastic calculus for Rosenblatt processes.Stochastic Processes Appl. 150 (2022), 853-885. Zbl 1494.60058, MR 4440168, 10.1016/j.spa.2020.01.004
Reference: [12] Čoupek, P., Maslowski, B., Ondreját, M.: $L^p$-valued stochastic convolution integral driven by Volterra noise.Stoch. Dyn. 18 (2018), Article ID 1850048, 22 pages. Zbl 1417.60044, MR 3869886, 10.1142/S021949371850048X
Reference: [13] Čoupek, P., Maslowski, B., Ondreját, M.: Stochastic integration with respect to fractional processes in Banach spaces.J. Funct. Anal. 282 (2022), Article ID 109393, 62 pages. Zbl 1497.60052, MR 4375656, 10.1016/j.jfa.2022.109393
Reference: [14] Čoupek, P., Ondreját, M.: Besov-Orlicz path regularity of non-Gaussian processes.Potential Anal 60 (2024), 307-339. Zbl 07798453, MR 4696040, 10.1007/s11118-022-10051-8
Reference: [15] Crauel, H., Debussche, A., Flandoli, F.: Random attractors.J. Dyn. Differ. Equations 9 (1997), 307-341. Zbl 0884.58064, MR 1451294, 10.1007/BF02219225
Reference: [16] Crauel, H., Flandoli, F.: Attractors for random dynamical systems.Probab. Theory Relat. Fields 100 (1994), 365-393. Zbl 0819.58023, MR 1305587, 10.1007/BF01193705
Reference: [17] Davydov, Y. A.: The invariance principle for stationary processes.Theor. Probab. Appl. 15 (1970), 487-498. Zbl 0219.60030, MR 0283872, 10.1137/1115050
Reference: [18] Daw, L., Kerchev, G.: Fractal dimensions of the Rosenblatt process.Stochastic Processes Appl. 161 (2023), 544-571. Zbl 07697552, MR 4583768, 10.1016/j.spa.2023.04.001
Reference: [19] Dobrushin, R. L., Major, P.: Non-central limit theorems for non-linear functionals of Gaussian fields.Z. Wahrscheinlichkeitstheor. Verw. Geb. 50 (1979), 27-52. Zbl 0397.60034, MR 0550122, 10.1007/BF00535673
Reference: [20] Garrido-Atienza, M. J., Lu, K., Schmalfuss, B.: Random dynamical systems for stochastic partial differential equations driven by a fractional Brownian motion.Discrete Contin. Dyn. Syst., Ser. B 14 (2010), 473-493. Zbl 1200.37075, MR 2660869, 10.3934/dcdsb.2010.14.473
Reference: [21] Garrido-Atienza, M. J., Schmalfuss, B.: On fractional Brownian motions and random dynamical systems.Bol. Soc. Esp. Mat. Apl., SeMA 51 (2010), 71-78. Zbl 1242.60037, MR 2675964, 10.1007/BF03322556
Reference: [22] Gross, A.: Some mixing conditions for stationary symmetric stable stochastic processes.Stochastic Processes Appl. 51 (1994), 277-295. Zbl 0813.60039, MR 1288293, 10.1016/0304-4149(94)90046-9
Reference: [23] Kerchev, G., Nourdin, I., Saksman, E., Viitasaari, L.: Local times and sample path properties of the Rosenblatt process.Stochastic Processes Appl. 131 (2021), 498-522. MR 4165649, 10.1016/j.spa.2020.09.018
Reference: [24] Kiška, B.: Variation of Rosenblatt Process: Master's Thesis.Charles University, Faculty of Mathematics and Physics, Prague (2022).
Reference: [25] Kuehn, C., Lux, K., Neamţu, A.: Warning signs for non-Markovian bifurcations: Colour blindness and scaling laws.Proc. R. Soc. A 478 (2022), Article ID 20210740, 12 pages. MR 4409442, 10.1098/rspa.2021.0740
Reference: [26] Maejima, M., Tudor, C. A.: On the distribution of the Rosenblatt process.Stat. Probab. Lett. 83 (2013), 1490-1495. Zbl 1287.60024, MR 3048314, 10.1016/j.spl.2013.02.019
Reference: [27] Maruyama, G.: Infinitely divisible processes.Teor. Veroyatn. Primen. 15 (1970), 3-23. Zbl 0268.60036, MR 0285046
Reference: [28] Maslowski, B., Schmalfuss, B.: Random dynamical systems and stationary solutions of differential equations driven by the fractional Brownian motion.Stochastic Anal. Appl. 22 (2004), 1577-1607. Zbl 1062.60060, MR 2095071, 10.1081/SAP-200029498
Reference: [29] Mori, T., Oodaira, H.: The law of the iterated logarithm for self-similar processes represented by multiple Wiener integrals.Probab. Theory Relat. Fields 71 (1986), 367-391. Zbl 0562.60033, MR 0824710, 10.1007/BF01000212
Reference: [30] Nourdin, I., Peccati, G.: Normal Approximations with Malliavin Calculus: From Stein's Method to Universality.Cambridge Tracts in Mathematics 129. Cambridge University Press, Cambridge (2012). Zbl 1266.60001, MR 2962301, 10.1017/CBO9781139084659
Reference: [31] Nualart, D.: The Malliavin Calculus and Related Topics.Probability and Its Applications. Springer, Berlin (2006). Zbl 1099.60003, MR 2200233, 10.1007/3-540-28329-3
Reference: [32] Pipiras, V.: Wavelet-type expansion of the Rosenblatt process.J. Fourier Anal. Appl. 10 (2004), 599-634. Zbl 1075.60032, MR 2105535, 10.1007/s00041-004-3004-y
Reference: [33] Rosenblatt, M.: Independence and dependence.Proceedings of the 4th Berkeley Symposium Mathemacal Statistics and Probability University of California Press, Berkeley (1961), 431-443. Zbl 0105.11802, MR 0133863
Reference: [34] Rosiński, J., Zak, T. \.: Simple conditions for mixing of infinitely divisible processes.Stochastic Processes Appl. 61 (1996), 277-288. Zbl 0849.60031, MR 1386177, 10.1016/0304-4149(95)00083-6
Reference: [35] Samorodnitsky, G.: Stochastic Processes and Long Range Dependence.Springer Series in Operations Research and Financial Engineering. Springer, Cham (2016). Zbl 1376.60007, MR 3561100, 10.1007/978-3-319-45575-4
Reference: [36] Slaoui, M., Tudor, C. A.: Behavior with respect to the Hurst index of the Wiener Hermite integrals and application to SPDEs.J. Math. Anal. Appl. 479 (2019), 350-383. Zbl 1479.60105, MR 3987039, 10.1016/j.jmaa.2019.06.031
Reference: [37] Slaoui, M., Tudor, C. A.: Limit behavior of the Rosenblatt Ornstein-Uhlenbeck process with respect to the Hurst index.Theory Probab. Math. Stat. 98 (2019), 183-198. Zbl 1488.60136, MR 3824686, 10.1090/tpms/1070
Reference: [38] Slaoui, M., Tudor, C. A.: The linear stochastic heat equation with Hermite noise.Infin. Dimens. Anal. Quantum Probab. Relat. Top. 22 (2019), Articles ID 1950022, 23 pages. Zbl 1436.60054, MR 4064931, 10.1142/S021902571950022X
Reference: [39] Taqqu, M. S.: Weak convergence to fractional Brownian motion and to the Rosenblatt process.Z. Wahrscheinlichkeitstheor. Verw. Geb. 31 (1975), 287-302. Zbl 0303.60033, MR 0400329, 10.1007/BF00532868
Reference: [40] Taqqu, M. S.: Convergence of integrated processes of arbitrary Hermite rank.Z. Wahrscheinlichkeitstheor. Verw. Geb. 50 (1979), 53-83. Zbl 0397.60028, MR 0550123, 10.1007/BF00535674
Reference: [41] Taqqu, M. S.: The Rosenblatt process.Selected Works of Murray Rosenblatt Springer, New York (2011), 29-45. MR 1455144, 10.1007/978-1-4419-8339-8_6
Reference: [42] Temam, R.: Infinite-Dimensional Dynamical Systems in Mechanics and Physics.Applied Mathematical Sciences 68. Springer, New York (1997). Zbl 0871.35001, MR 1441312, 10.1007/978-1-4612-0645-3
Reference: [43] Tudor, C. A.: Analysis of the Rosenblatt process.ESAIM, Probab. Stat. 12 (2008), 230-257. Zbl 1187.60028, MR 2374640, 10.1051/ps:2007037
Reference: [44] Tudor, C. A., Viens, F. G.: Variations and estimators for self-similarity parameters via Malliavin calculus.Ann. Probab. 37 (2009), 2093-2134. Zbl 1196.60036, MR 2573552, 10.1214/09-AOP459
Reference: [45] Veillette, M. S., Taqqu, M. S.: Properties and numerical evaluation of the Rosenblatt distribution.Bernoulli 19 (2013), 982-1005 \99999DOI99999 10.3150/12-BEJ421 \hyphenation{Bohdan}. Zbl 1273.60020, MR 3079303, 10.3150/12-BEJ421
.

Fulltext not available (moving wall 24 months)

Partner of
EuDML logo